Применение солнечных батарей

Примеры применения солнечных батарей сегодня

На сегодняшний день применение солнечных батарей не имеет границ.

С каждым днем все чаще они успешно применяются в самых разнообразных областях промышленности, в сельском хозяйстве, военно-космической отрасли и даже в повседневной жизни людей.

Для того чтобы понять насколько обширно на сегодняшний день использование солнечных батарей в России, необходимо совершить интересное путешествие по нашему огромному миру.

На сегодняшний день весьма распространено уличное освещение на солнечных батареях. Такие светильники все чаще появляются на страницах по ландшафтному дизайну. Довольно часто они встречаются в садах знаменитостей и на дачных участках простых людей.

Изначально использование солнечных батарей планировалось исключительно в военных целях в космической промышленности.

Еще совсем недавно такие панели относились к фантастике и использовались исключительно в космонавтике, а обычные люди могли наблюдать такие устройства только в фильмах о будущем.

Однако прошло время, и сегодня такие технологии уже не являются роскошью. В наши дни освещение на солнечных батареях – это не только красиво, доступно и экологически безопасно, но и крайне выгодно.

Сегодня по всему миру стартуют проекты по освещению улиц при помощи солнечной электроэнергии. В России производство солнечных батарей постоянно увеличивает и набирает обороты, создаются даже электростанции на солнечных батареях. Перспективы этой отрасли весьма и весьма велики и дальновидны.

2. Электричество от солнечных батарей там, где нет линий электропередач

К сожалению, современные линии электропередач, которые опутали большую часть всей планеты, даже на сегодняшний день еще не добрались до некоторых труднодоступных уголков.

Некоторые места нашей необъятной страны подключить к электростанции крайне дорого и не выгодно. Именно в таких случаях электричество от солнечных батарей является настоящим спасением.

В таких местах установка солнечной батареи является наиболее целесообразным и выгодным решением.

Еще одна отрасль, в которой весьма успешно используются солнечные батареи – это автомобилестроение. Создаются новые гибридные автомобили на солнечных батареях. К примеру, Toyota Prius оснащена гибридным мотором, а на крыше автомобиля установлена солнечная батарея.

В случае если топливо заканчивается, автомобиль способен проехать еще 5 км от этой батареи. Показатель, конечно, не особо высок, но эти технологии еще совсем новые и постоянно развиваются. Создаются автомобили, которые способны работать на таких батареях гораздо дольше.

При этом они являются экологически безопасными и беспрецедентно экономичными.

Помимо этого только при помощи солнечной энергии и солнечных батарей разрешаются вопросы об энергообеспечении в некоторых отрезанных от цивилизации домах. Как правило, установка солнечных батарей существенно выгоднее, нежели использование генераторов на жидком либо твердом топливе.

В подавляющем большинстве случае солнечные батареи устанавливают на крышах домов и соединяют с системой аккумулирования энергии.

Таким образом, в солнечные дни энергия от солнечных батарей заряжает аккумуляторы и питает бытовые приборы, а в ночное время и в облачные дни питание осуществляется от аккумуляторов.

Помимо этого в Испании широкое применение получили обогреватели на солнечных батареях. Из экономических соображений множество домов в Испании были оборудованы солнечными батареями, которые использовались для нагрева воды, благодаря чему в момент отключения электричества люди все равно будут снабжены горячей водой и отоплением помещений.

3. Эксплуатация солнечных батарей в быту

В первую очередь стоит отметить, что дом, который оснащен солнечными батареями, не подвергается перепадам напряжения в электросети. Самое интересное, что данными панелями можно оснастить абсолютно любой дом, к примеру, дачу, либо домик в лесу или деревне. Такие установки вполне способны питать освещение дома или некоторые бытовые приборы, такие как телевизор или холодильник.

Что можно сделать из солнечной батареи? Ответ на этот вопрос очень прост. На сегодняшний день мировые производители электроники и бытовых приборов уже начинают внедрять солнечные панели в свою продукцию.

К примеру, каждый в своей жизни сталкивался с обычным калькулятором, работающим от солнечной энергии. Помимо этого, в современном мире существует масса полезных приборов, которые оснащены небольшой солнечной панелью.

Это различные зарядные устройства для мобильных телефонов и аккумуляторов, фонарики, светильники, мобильные телефоны и так далее. Потенциал огромен и не имеет границ.

Применение солнечных батарей в быту и в промышленности имеет массу преимуществ, но главное – это экологичность.

4. Солнечные батареи и их применение в промышленности

На сегодняшний день наибольший опыт использования солнечных батарей имеют такие страны как: США, Испания, Германия, Объединенные Арабские Эмираты, Украина и другие страны Европы. Распространение альтернативных источников энергии в этих странах объясняется нехваткой основных теплоносителей (нефть или газ).

В России развитие солнечной энергетики только развивается и набирает обороты. Создаются электростанции, которые питают как промышленные комплексы, так и жилые дома.

Среди множества преимуществ солнечной электроэнергии первым делом стоит отметить тот факт, что такое оборудование во время всего срока использования генерирует существенно больше энергии, нежели было затрачено на его изготовление. К примеру, самые распространенные кремниевые солнечные батареи, которые работают в Испании, возвращают потраченную энергию на их изготовление уже в первые 2 года. При этом срок их службы составляет не менее 20 лет.

Еще одно преимущество солнечных панелей заключается в том, что для массовой генерации электроэнергии не нужно занимать много полезного и, как правило, дорогостоящего пространства. Солнечные батареи можно устанавливать на крыши домов и фасады зданий.

С технической стороны главное преимущество таких систем заключается в полном отсутствии расходных материалов, а также в отсутствии необходимости применять любые виды топлива. Помимо этого в таких системах нет движущихся элементов, которые вырабатывают много шума и быстро изнашиваются. Они не нуждаются в постоянном техническом обслуживании и ремонте.

Таким образом, электроснабжение от солнечных батарей является выгодным с любой точки зрения.

5. Солнечные батареи. Экономия электроэнергии: Видео

Источник: http://www.techno-guide.ru/energetika/solnechnye-batarei/primery-primeneniya-solnechnykh-batarej-segodnya.html

Все о солнечных батареях: виды панелей, плюсы и минусы

Солнечные батареи – это популярный во многих странах источник дешевого электричества.

Используя природные ресурсы, человек научился добывать электроэнергию не только из воды, потоков ветра и горения полезных ископаемых, но и из солнечных лучей.

Стоит понимать, что солнечные панели являются частью системы, сами по себе они не будут генерировать полезный электрический ток. Разберемся, какие бывают солнечные батареи, и стоит ли их устанавливать.

История развития

Свое развитие батареи солнечные начали еще в далеком XIX веке. Предпосылкой этому стали революционные исследования о преобразовании энергии Солнца в более материальную составляющую.

Первые солнечные панели имели КПД всего 1%, а их химической основой являлся селен. Первый вклад в развитие таких элементов питания внесли А. Беккерель, У. Смит, Ч. Фриттс.

Но использование всего 1% от всей энергии, поступающей на солнечную панель – это очень мало. Данные элементы не могли обеспечить бесперебойное питание техники, поэтому исследования продолжались.

В 1954 году трое ученых – Гордон Пирсон, Дэррил Чапин и Кэл Фуллер – изобрели батарею уже с КПД 4%. Она работала на кремнии, а впоследствии ее КПД было увеличено до 20%.

На данный момент солнечные батареи продуцируют только 1% от всей энергии в мире. Их в основном проводят в места труднодоступные для электрификации. Широко применяют этот источник питания в космической промышленности. Специалисты считают, что такому аккумулятору открыты все пути, ведь с каждым годом солнечная активность возрастает.

В наших широтах данные элементы питания устанавливают в частных домах при экономии энергопотребления и заботе об окружающей среде.

Плюсы и минусы солнечных батарей

Солнечная батарея обладает своими преимуществами и недостатками. Рассмотрим их более подробно.

Плюсы:

  • Высокая экологичность. При эксплуатации не используются невосполнимые ископаемые, не возникает отходов.
  • Отсутствие шума.
  • Доступность. Каждый уголок Земного шара освещается Солнцем.
  • Постоянство. Если ископаемые могут закончиться, их выработка уменьшиться, то наcчет солнечной энергии беспокоиться не стоит. По данным ученых, нашему светилу еще долго ничего не грозит.
  • Обширная область использования. Панели могут применяться как в сельской местности, так и в космосе.
  • Новые технологии. На солнечных батареях проводят испытания, на их усовершенствование тратятся громадные суммы, данная область постоянно модернизируется, подвергается инновациям.

Минусы:

  • Дороговизна. Не каждый человек может позволить себе установить достаточное количество солнечных элементов питания для обеспечения своих нужд. Электрификация небольшого дачного домика обойдется в 1000-1200 долларов, в то время как на двухэтажных особняк может уйти до 10 000 у.е.
  • Солнечное освещение – непостоянная единица. КПД батареи будет снижаться в ночное время, пасмурную погоду.

Комплектация батарей

О солнечных батареях множество людей думают ошибочно. Ведь сама по себе панель на крыше не может дать переменный ток.

Чтобы обеспечить жилище электричеством, придется приобрести:

  1. Собственно солнечные панели. Это тот элемент конструкции, который крепится на стены или крышу дома. При попадании кванта солнечного света кремниевые кристаллы начинают колебаться, и создается электрический ток.
  2. Аккумулятор. Энергия, которая не пошла на расход бытовых нужд, аккумулируется в этом приборе, и потом ночью или в ненастную погоду она расходуется.
  3. Контроллер напряжения. Этот элемент является скорее не обязательным, а желательным. Он повышает продолжительность жизни аккумулятора, сообщает о его предельно низком и высоком заряде.
  4. Инвертор, или преобразователь энергии. В аккумуляторе электрический ток находится в постоянном значении, а для бытовых нужд необходим переменный. Инвентор и совершает данное преобразование.

Как мы видим, солнечные панели – это лишь малая часть системы. Они сами состоят из более мелких элементов – модулей. Раз устройство данных элементов питания модульное, при необходимости посредством подсоединения составляющих вы можете добавить панели или убрать лишние.

Виды солнечных батарей

Солнечная панель состоит из компонентов, и они могут быть разными:

  • монокристаллическими;
  • поликристаллическими;
  • пленочными.

В первом случае один фотоэлемент – это один кристалл кремния. Данные батареи имеют наибольший КПД (до 25%), но они являются очень дорогими. Пластины насыщенного синего цвета, а их края немного скругленные.

Поликристаллические фотоэлементы объединяют несколько кристаллов кремния. Они широко распространены, их КПД колеблется в районе 20-23%. Структура неоднородна, и они хуже поглощают солнечный свет, нежели монокристаллические панели. По стоимости они более доступны.

Тонкопленочные (аморфные) фотоэлементы представляют собой напыление полупроводника на подложку. Основное преимущество в том, что их можно расположить буквально на любой поверхности, они гибкие. Недостаток – небольшая производительность.

По техническому принципу электрификацию солнечными элементами делят на:

  • открытые системы;
  • закрытые системы (автономные);
  • комбинированные.

Открытой система называется, когда солнечная панель подключена к общей электросети. В таком случае необходимость приобретения аккумулятора и контролера отпадает. Солнечные батареи подсоединяются к общей сети с помощью инвертора.

Если потребляемая бытовыми приборами мощность не превышает ту, которую производят панели, то из общей электросети ток не берется. В случае, когда вы включили приборы повышенного энергопотребления, и батареи не могут их обеспечить током, электричество берется из общей сети.

Особенностью является то, что если тока не будет в основной сети, то батареи работать не станут.

С автономными системами все понятно: они замкнутые и не требуют внешней сети. Энергия накапливается в аккумуляторе и расходуется по мере необходимости.

Комбинированные сети не получили широкого распространения, так как они дороги. Сложная конструкция объединяет тип открытой и закрытой системы. При излишке электроэнергии, вырабатываемой батареями, ее можно перенаправить в общую сеть.

Применение солнечных батарей

Кроме космонавтики и обеспечения частных домов электроэнергией, панели или батареи солнечные применяют в следующих сферах:

  • Автомобилестроение. Экологичный транспорт приобретает популярность, ведь выхлопы бензина и газов загрязняют атмосферу, а цены на топливо постоянно растут. Машины на солнечной энергии способны развивать скорость до 140 км/ч.
  • Эксплуатация водного транспорта (барж, катеров, яхт). Такой транспорт можно встретить в Турции. Лодки развивают небольшую скорость (до 10 км/ч), и это позволяет туристом осмотреть достопримечательности и роскошные пейзажи этой страны.
  • Энергообеспечение зданий. В развитых странах Европы многие муниципальные здания и сооружения полностью обеспечивают свои нужды с помощью энергии, которую выделяют солнечные панели.
  • Самолетостроение. Благодаря наличию батарей, самолет в полете может длительное время не расходовать топливо.

Отрасль постоянно развивается. Уже изобрели зарядки для телефонов и ноутбуков, работающие от энергии Солнца.

На что обратить внимание при покупке солнечных батарей для дома

Данная информация будет полезна, если вы решили перейти на солнечный источник энергии. Приобретая все комплектующие для такой системы, нужно знать, где можно сэкономить, а на что обратить особое внимание:

  1. Покупайте составляющие (панели, аккумулятор, инвертор) в конце зимы-начале весны. Как правило, магазины в это время предоставляют большие скидки.
  2. Не покупайте сразу много солнечных батарей. Помните, что эта система модульная, и добрать необходимое количество для обеспечения нужд бытовой техники очень просто.
  3. Желательно заменить все лампы накаливания в доме на светодиодные или LED. Они потребляют меньше энергии, а срок службы у них дольше.
  4. Для дома приобретайте солнечные батареи с выходным напряжением в 12 В. Именно такие значения подойдут для бытовой техники, очень мало приборов используют 24 В и 48 В. Все показатели напряжения вы можете найти в паспорте устройств.

При выборе солнечных батарей обратите внимание, что каждая должна быть помещена в защитный корпус из алюминия. Этот металл легкий, прочный, стойкий к коррозии. Сверху защитное стекло должно быть матовым, не давать глянца и бликов.

Читайте также:  Выбираем шторы на окна маленькой спальни

Обеспечивать свой дом уютом, теплом и не платить за электричество вполне возможно. Для этого нужно установить такую систему энергоснабжения. Но стоит учитывать, что она тоже требует значительных вложений и обладает рядом нюансов. Изучив все положительные и отрицательные стороны, мы надеемся, что вы сделаете правильный выбор.

Источник: https://batteryk.com/solnechnye-batarei

Применение солнечных батарей

Областей применения солнечных батарей становится все больше с каждым днем. Эти устройства с успехом проявляют себя в сфере промышленности, сельского хозяйства, военно-космических отраслях и даже в быту. Чтобы понять, насколько обширно использование солнечных батарей, давайте совершим небольшое виртуальное турне по нашему необъятному миру.

Там, куда электричество никак не дойдет

К сожалению, линии электропередач, опутавшие большую часть нашей планеты, всё ещё не могут добраться в самые труднодоступные уголки, которые подключать к ресурсам электростанций оказывается дороже, чем установить солнечную батарею, преобразующую в электроэнергию обычный дневной свет.

Солнечные батареи обеспечивают электроэнергией прибайкальскую метеостанцию на склонах Хамар-Дабан

Как Вы думаете решают вопрос отсутствия электроэнергии в некоторых отрезанных от цивилизации домах? Устанавливать электростанцию на жидком или твердом топливе оказывается дороже и ущербнее для окружающей экологии, чем использовать солнечные батареи.

Чаще всего ими укрывают крыши домов, так что в солнечный день они вырабатывают электричество, которого достаточно и для освещения и работы бытовых устройств. А специальный проект в Испании оказался ещё успешнее. Из экономических соображений ряд современных домов был оборудован солнечными батареями, энергия которых используется для нагрева воды.

Оказавшись отключенными от электричества, дефицит горячей воды и проблема с отоплением им не грозит.

Дом с солнечными батареями на крыше не подвержен перепадам в электросети

Что интересно, такими панелями можно оборудовать практически любой дом, например, дачу или домик в деревне, к которой не подведен “свет”. Дабы удостовериться в этом, специалисты сайта www.sun-battery.

biz провели эксперимент, в котором водрузили солнечную батарею “AP-640” (кстати, купить её может каждый желающий) на крышу одного из домов.

Результат — автономное освещение внутри и работа нескольких электрозависимых устройств (телевизор, холодильник и т.п.).

Солнечные батареи AP-640 решают проблему электроснабжения домов

Аргументов в пользу солнечных электростанций не счесть, но основным из них является экологичность.

Примером, где отсутствие вредных выбросов солнечными батареями в окружающую среду сделало их альтернативой традиционными источникам электроэнергии, стала солнечная электростанция, расположенная недалеко от испанского местечка Севильи.

Солнечные батареи водрузили на башню, на которую направили зеркала, отражающие и фокусирующие свет. Довольными остались около 10 тысяч близлежащих домохозяйств, которые снабжаются электроэнергией, преобразованной из света от солнца.

Самая крупная солнечная электростанция в Испании имеет мощность в 20 мегаватт

Солнечные батареи оказались практически единственным источником электроэнергии за пределами Земли. Ими оснащаются все космические аппараты. Когда Солнце освещает их, они вырабатывают электроэнергию, которая аккумулируется бортовыми батареями и используется для питания оборудования в тех местах, где свет недосягаем. В отличие от атомных электрогенераторов они не выделяют вредных веществ.

Солнечные батареи обеспечивают электроэнергией МКС

Солнечные батареи нашли применение и в наземном транспорте. Не так давно компания Toyota стартовала продажи своей модели Prius, оборудованной гибридным двигателем. На крыше автомобиля нового поколения располагаются солнечные батареи, от которых тот при внезапно закончившемся топливе сможет проехать ещё километров 5.

Автомобиль на солнечных батареях экологически безопасен и беспрецедентно экономичен

Солнечные батареи для бытовых нужд

Встретить солнечные батареи в рознице по разумной цене становится всё проще.

На глаза они попадаются, как в виде отдельных, работающих в качестве резервного источника питания устройств, так и встраиваются в различные приборы.

Например, многие помнят, как в нашу жизнь вторглись калькуляторы, практически сразу получившие небольшие панели, позволяющие им работать без батареек, лишь попав на свет.

Калькулятор на солнечных батареях может работать всегда и везде, где есть свет

Разработчики устройств, которые могут работать от альтернативных источников электроэнергии пошли ещё дальше.

На свет появились аккумуляторные фонарики, которые днем можно зарядить, просто положив встроенной солнечной батареей на свет, а в темное время суток пользоваться как обычно.

Получается, по сути, универсальный спутник для путешествий, способный придти на помощь там, куда не добрался электрический ток.

Не менее интересным оказался проект корейской компании Samsung, представившей на свет свой недорогой мобильник E1107 Crest Solar, задняя стенка которого получила небольшую солнечную панель, которой достаточно, чтобы пополнять заряд аккумулятора без подключения к сети. При положительном балансе на счету и в зоне действия операторов без связи с этим телефоном остаться просто невозможно.

Мобильный телефон Samsung E1107 Crest Solar оснащен солнечными батареями

Впрочем, если ваш мобильный телефон, смартфон, ноутбук или другое устройство не получило от производителя альтернативного зарядника на солнечных батареях, Вы всегда можете восполнить этот недостаток.

Как раз для таких случаев продаются внешние солнечные панели, многие из которых могут накапливать электроэнергию во встроенных или входящих в комплект поставки аккумуляторах, а затем отдавать её подключаемым девайсам.

Внешняя солнечная батарея для питания мобильных телефонов и других компактных устройств

А как часто вам приходилось скучать во время загородного отдыха или туристического похода без музыки или света в палатке, выбросив батарейки, которые исчерпали свой электрический заряд? Конечно, карманные солнечные батареи вряд ли помогут в этом, но вот более крупные модели вполне. Такими переносными солнечными электростанциями очень часто оснащаются походные сумки и рюкзаки, а стоят они ненамного дороже обычных моделей, без которых не обходится ни один туристический поход.

Источник: https://www.sun-battery.biz/stat/primenenie_solnechnyh_batarej.php

Производство и применение солнечных батарей

Основная идея солнечных батарей

Принцип действия солнечной батареи заключается в прямом преобразовании света от Солнца в электрический ток. И при этом происходит генерация постоянного тока. Эта энергия может быть использована напрямую разными нагрузками постоянного тока или может запасаться в аккумуляторных батареях для использования в будущем при необходимости.

Использование солнечных батарей – отличная бизнес-идея. Но к сожалению, в России солнечная энергетика практически не развита из-за отсутствия политики поддержки в этой области. И поэтому большое количество крыш и других открытых солнцу территорий не приносят электричества и прибыли. Заняться освоением данной сферы – выгодное решение.

В первую очередь, нужно связаться с владельцами и лицами, которые заинтересованы в получении дополнительной прибыли с арендуемых крыш и других подходящих поверхностей. Хозяевам предоставляется специально разработанный бизнес план с полным расчётом всех расходов на монтаж солнечных батарей и прибыли, получаемой в форме электроэнергии.

В бизнес-плане стоит учитывать также расчёты солнечной активности, скорости ветра, метеорологической ситуации региона. Риск такого бизнеса совсем мал.

Солнечная энергетика будет успешной, потому что зависит только от активности солнца, которого на ближайшие годы уж точно хватит. В будущем можно рассчитывать и на поддержку со стороны государства, потому что солнечная энергетика – эта отрасль будущего.

Альтернативные источники энергии пользуются все большей популярностью, они незаменимы в частных домах, на тех объектах, где часто происходят сбои в поставке электрической энергии.

Надежное, качественное и проверенное временем оборудование даст возможность производить солнечные батареи и расширить возможности и горизонты для своего бизнеса.

Производство солнечных батарей

На сегодня есть несколько основных технологий производства солнечных батарей, которые основаны на применении какого-либо материала при создании пластины. Базируется это на разном поглощении различными материалами солнечного излучения.

Наибольшей популярностью среди используемых материалов пользуются поли- и монокристаллический кремний, CdTe, GaAs, аморфный кремний и другие.

В зависимости от выбранного материала используется определенная технология, отличающаяся стадиями производства и комплексом оборудования.

Чаще всего как сырье применяется поли- и монокристаллический кремний. КПД пластин из данного материала колеблется в диапазоне от 12 до 19%. Данные пластины довольно хрупкие, им необходима дополнительная защита, но они намного дешевле, чем пластины из других материалов.

Тонкопленочная технология базируется на применении таких материалов: GaAs, аморфный кремний и CdTe. КПД этих пластин тоже не выше 20%, хотя в будущем есть планы повышения его до 22%. В зависимости от подложки, которая используется, эти батареи могут гнуться, герметичны, устойчивы к механическим воздействиям.

Но и их стоимость превышает стоимость кремниевых систем.

Сегодня производство солнечных батарей в масштабе промышленности наиболее рентабельно осуществлять по кремниевой технологии, эта технология производства – самая изученная и дающая самый большой выход.

Цепочка производства на основе мультикристаллического кремния включает в себя такие стадии:

  • Подготовка пластины из кремния, очистка и промывка ее после резки;
  • Структурирование всей поверхности пластины, создание топологии на поверхности, ее травление;
  • Нанесение фосфора, легирование;
  • Вжигание, диффузия фосфора;
  • Создание P-n-перехода, изолирование, удаление лишних слоев;
  • Нанесение антиотражающего слоя;
  • Металлизация;
  • Сушка;
  • Создание контактов на лицевой стороне пластины;
  • Выравнивание пластины;
  • Проверка и тестирование.

Применение солнечных батарей

С недавнего времени солнечные батареи пользуются популярностью во всем мире. Применение солнечных батарей в микроэлектронике: (как зарядное устройство) для обеспечения электричеством аккумуляторов разной бытовой электроники — плееров, калькуляторов, фонариков и других, для подзарядки электромобилей.

Например в автомобиле Skoda Superb в одной из комплектаций можно установить солнечную батарею на крышу автомобиля – и тогда в жаркие дни, салон автомобиля будет проветриваться встроенным вентилятором, работающим от этой батареии, пока автомобиль находится на стоянке.

Применение солнечных батарей для энергообеспечения зданий – большие батареи работают как солнечные коллекторы, особенно популярны в субтропических и тропических регионах с большим числом солнечных дней.

Пользуются большим спросом в Средиземноморских странах, там их размещают на крышах домов. Очень много применяют солнечные батареи на крышах домов в Турции.

Новые здания Испании оборудованы солнечными водонагревателями.

Применение солнечных батарей в космосе: является один из главных способов получения электроэнергии на космических аппаратах, они длительное время работают без расхода материалов, и при этом экологически безопасные.

Солнечные батареи в России

В России солнечные батареи уже не новинка, существуют заводы по их производству в Москве, Краснодаре, Зеленограде, Новочебоксарске и Брянске. Их используют как в электронике, так и в быту и других сфера жизнедеятельности.

Но они всё ещё слабодоступны из-за высокой стоимости: базовый элемент солнечной батареи – это дорогой монокристаллический кремний, и поэтому цена киловатт-часа этой электроэнергии больше, чем полученной из каких-либо других источников.

Производство солнечных батарей – видео

В этом видео показан технологический процесс производства и сборки солнечных батарей

Источник: https://promplace.ru/articles/proizvodstvo-i-primenenie-solnechnih-batarej-52

Опыт использования солнечных батарей в Московской области с цифрами

Оригинал взят у victorborisov в Вся правда о солнечных панелях

Пришло время рассказать о том, насколько эффективна солнечная энергетика в Московской области. Целый год я собирал статистику выработки солнечной энергии с двух 100-ваттных солнечных панелей, установленных на крыше загородного дома и подключенных в сеть с использованием грид инвертора. Я уже писал об этом год назад. А сейчас пора подвести итоги.

Сейчас вы узнаете то, о чем никогда не расскажут продавцы солнечных панелей.

Ровно год назад, в октябре 2015 года, в качестве эксперимента я решил записаться в ряды «зеленых», спасающих нашу планету от преждевременной гибели, и приобрел солнечные панели максимальной мощностью 200 ватт и грид-инвертор рассчитанный максимум на 300 (500) ватт вырабатываемой мощности. На фотографии вы можете увидеть структуру поликристаллической 200-ваттной панели, но через пару дней после покупки стало ясно, что в одиночной конфигурации у неё слишком низкое напряжение, недостаточное для правильной работы моего грид-инвертора. Поэтому мне пришлось её поменять на две 100-ваттных монокристаллических панели. Теоретически они должны быть немного эффективнее, по факту же они просто дороже. Это панели высокого качества, российского бренда Sunways. За две панели я заплатил 14 800 рублей.Вторая статья расходов — грид-инвертор китайского производства. Производитель никак себя не обозначил, но устройство сделано качественно, а вскрытие показало, что внутренние компоненты рассчитаны на мощность до 500 ватт (вместо 300, написанных на корпусе). Стоит такой грид всего 5 000 рублей. Грид — это гениальное устройство. С одной стороны к нему подключается + и – от солнечных панелей, а с другой стороны он с помощью обычной электрической вилки подключается совершенно в любую электрическую розетку в вашем доме. В процессе работы грид подстраивается под частоту в сети и начинает “выкачивать” переменный ток (сконвертированный из постоянного) в вашу домашную сеть 220 вольт. Грид работает только при наличии напряжения в сети и его нельзя рассматривать как резервный источник питания. Это его единственный минус. А колоссальным плюсом грид инвертора является то, что вам в принципе не нужны аккумуляторы. Ведь именно аккумуляторы являются самым слабым звеном в альтернативной энергетике. Если та же солнечная панель гарантированно отработает более 25 лет (то есть через 25 лет она потеряет примерно 20% своей производительности), то срок службы обыкновенного свинцового аккумулятора в аналогичных условиях составит 3-4 года. Гелевые и AGM аккумуляторы прослужат дольше, до 10 лет, но они и стоят в 5 раз дороже обычных аккумуляторов. Поскольку у меня есть сетевое электричество, то мне никакие аккумуляторы не нужны. Если же делать систему автономной, то нужно добавить к бюджету еще 15-20 тысяч рублей на аккумулятор и контроллер к нему.Теперь, что касается выработки электроэнергии. Вся энергия вырабатываемая солнечными панелями в реальном времени попадает в сеть. Если в доме есть потребители этой энергии, то она вся будет израсходована, а счетчик на вводе в дом «крутиться» не будет. Если же моментальная выработка электроэнергии превысит потребляемую в данный момент, то вся энергия будет передана обратно в сеть. То есть счетчик будет «крутиться» в обратную сторону. Но тут есть нюансы. Во-первых, многие современные электронные счетчики считают проходящий через них ток без учета его направления (то есть вы будете платить за отдаваемую обратно в сеть электроэнергию). А во-вторых, российское законодательство не разрешает частным лицам продавать электроэнергию. Такое разрешено в Европе и именно поэтому там каждый второй дом обвешан солнечными панелями, что в совокупности с высокими сетевыми тарифами позволяет действительно экономить. Что делать в России? Не ставить солнечные панели, которые могут выработать энергии больше, чем текущее дневное энергопотребление в доме. Именно по этой причине у меня всего две панели суммарной мощностью 200 ватт, которые с учетом потерь инвертора могут отдать в сеть примерно 160-170 ватт. А мой дом стабильно круглосуточно потребляет примерно 130-150 ватт в час. То есть вся выработанная солнечными панелями энергия будет гарантированно потреблена внутри дома.

Читайте также:  Как соорудить навесы для беседки

Для контроля вырабатываемой и потребляемой энергии я пользуюсь Smappee. Я уже писал про него в прошлом году. У него два трансформатора тока, которые позволяют вести учет как сетевой, так и вырабатываемой солнечными панелями электроэнергии.

Начнём с теории, и перейдем к практике.

В интернете есть много калькуляторов солнечных электростанций, вот здесь можно посмотреть на то, что он из себя представляет. Из моих исходных данных согласно калькулятору следует, что среднегодовая выработка электроэнергии моих солнечных панелей составит 0,66 квтч/сутки, а суммарная выработка за год — 239,9 квтч.

Это данные для идеальных погодных условий и без учета потерь на конвертацию постоянного тока в переменный (вы же не собираетесь переделывать электроснабжение своего домохозяйства на постоянное напряжение?). В реальности полученную цифру можно смело делить на два.Сравниваем с реальными данными по выработке за год:

2015 год – 5,84 квтч

Октябрь – 2,96 квтч (с 10 октября)Ноябрь – 1,5 квтчДекабрь – 1,38 квтч

2016 год – 111,7 квтч

Январь – 0,75 квтчФевраль – 5,28 квтчМарт – 8,61 квтчАпрель – 14 квтчМай – 19,74 квтчИюнь – 19,4 квтчИюль – 17,1 квтчАвгуст – 17,53 квтчСентябрь – 7,52 квтчОктябрь – 1,81 квтч (до 10 октября)

Всего: 117,5 квтч

Вот график выработки и потребления электроэнергии в загородном доме за последние 6 месяцев (апрель-октябрь 2016 года). Именно за апрель-август солнечными панелями была выработана львиная доля (более 70%) электрической энергии. В остальные месяцы года выработка была невозможна по большей части из-за облачности и снега.

Ну и не забываем, что КПД грида по конвертации постоянного тока в переменный примерно 60-65%.Солнечные панели установлены практически в идеальных условиях. Направление строго на юг, поблизости нет высоких домов отбрасывающих тень, угол установки относительно горизонта — ровно 45 градусов. Этот угол даст максимальную среднегодовую выработку электроэнергии.

Конечно можно было купить поворотный механизм с электроприводом и функцией слежения за солнцем, но это бы увеличило бюджет всей установки практически в 2 раза, тем самым отодвинув срок её окупаемости в бесконечность.По выработке солнечной энергии в солнечные дни у меня нет никаких вопросов. Она полностью соответствует расчетным.

И даже снижение выработки зимой, когда солнце не поднимается высоко над горизонтом не было бы настолько критично, если бы не… облачность. Именно облачность является главным врагом фотовольтаики. Вот вам почасовая выработка за два дня: 5 и 6 октября 2016 года. Пятого октября светило солнце, а 6 октября небо затянули свинцовые тучи.

Солнце, ау! Ты где спряталось?Зимой есть еще одна небольшая проблема — снег. Решить её можно только одним способом, установить панели практически вертикально. Либо каждый день вручную очищать их от снега. Но снег это ерунда, главное чтобы светило солнце. Пусть даже низко над горизонтом.

Итак, подсчитаем расходы:Грид инвертор (300-500 ватт) — 5 000 рублейМонокристаллическая солнечная панель (Grade A — высшего качества) 2 шт по 100 ватт — 14 800 рублейПровода для подключения солнечных панелей (сечением 6 мм2) — 700 рублей

Итого: 20 500 рублей.

За прошедший отчетный период было выработано 117,5 квтч, по текущему дневному тарифу (5,53 руб/квтч) это составит 650 рублей.

Если предположить, что стоимость сетевых тарифов не изменится (на самом деле они изменяются в большую сторону 2 раза в год), то свои вложения в альтернативную энергетику я смогу вернуть только через 32 года!

А уж если добавить аккумуляторы, то вся эта система никогда себя не окупит. Поэтому солнечная энергетика при наличии сетевого электричества может быть выгодна только в одном случае — когда у нас электроэнергия будет стоить как в Европе. Вот будет стоить 1 квтч сетевого электричества более 25 рублей, вот тогда солнечные панели будут очень выгодны.Пока же использовать солнечные панели выгодно только там, где нет сетевого электричества, а его проведение стоит слишком дорого. Предположим, что у вас его загородный дом, расположенный в 3-5 км от ближайшей электрической линии. Причем она высоковольтная (то есть потребуется установка трансформатора), а у вас нет соседей (не с кем разделить расходы). То есть за подключение к сети вам придется заплатить условно 500 000 рублей, а после этого еще и платить по сетевым тарифам. Вот в этом случае вам будет выгоднее купить на эту сумму солнечные панели, контроллер и аккумуляторы — ведь после ввода системы в эксплуатацию вам уже больше платить не нужно будет.

А пока стоит рассматривать фотовольтаику исключительно, как хобби.

Источник: https://koyger.livejournal.com/73614.html

Перспективы использования солнечных батарей

Рынок солнечной энергии для россиян пока остаётся диковинкой, а вот для жителей многих стран он уже стал «прозой жизни». Во всяком случае, наши соотечественники, побывавшие за рубежом, обращают внимание на массовое использование солнечных батарей в быту и коммунальном хозяйстве.

В число «технологически продвинутых» регионов входят не только солнечные курорты Испании, Италии или, скажем, западное побережье США, но также, например, Германия, Швеция или Финляндия, где климатические условия близки к условиям Европейской части России.

Поэтому опыт североевропейских стран для нас особенно интересен.

https://www.youtube.com/watch?v=_g-08yNnTwo

Солнечные батареи постепенно начинают применяться и в России. В первую очередь — как вспомогательная и аварийная система энергоснабжения, но они могут работать и автономно.

Некачественное энергоснабжение обычно характерно для сельской местности — скажем, устаревшая сеть не рассчитана на большую нагрузку (раньше расчётная нагрузка на один дом составляла 2,5 кВт). Такая сеть способна выдержать подключение холодильника, телевизора и нескольких осветительных приборов.

Если при этом будет работать ещё и современная стиральная машина с подогревом воды, то, вероятно, возникнут проблемы. Ну а при подключении более мощного водонагревателя или сварочного аппарата сеть просто не выдержит.

Солнечные батареи позволяют компенсировать недостаточную мощность сети (обычно 1,5-3 кВт) без потери комфорта.

Причём управляющий компьютер способен составить расписание включения-выключения основных энергопотребляющих устройств в доме в зависимости от предполагаемого объёма выработанной электроэнергии, которую он высчитывает на основании метеопрогнозов, полученных через сети связи (Интернет). Допустим, завтра ожидается солнечная погода—значит, можно запланировать стирку.

ПОДБИРАЕМ СИСТЕМУ

Автономная система энергоснабжения, помимо солнечных батарей, включает в себя ещё несколько компонентов. Перечислим основные из них.

  • Инвертор — так сокращённо называют инверторный преобразователь постоянного тока в переменный (и наоборот). Инвертор — важнейшее устройство системы, к которому подключаются и другие источники тока (солнечные батареи, ветрогенератор, дизельный генератор и т. д.) через соответствующие контроллеры, комплект аккумуляторных батарей, внешнюю и внутридомовую электросети. Следует учесть, что модели инверторов, используемые совместно с электросетью, отличаются по конструкции от работающих автономно.
  • Контроллеры заряда солнечных батарей — устройства, отвечающие за эффективное преобразование вырабатываемой электроэнергии. Без контроллеров невозможна работа солнечных панелей с аккумуляторами — их пришлось бы вручную отключать от аккумуляторных батарей каждую ночь и в конце каждого заряда. Кроме того, контроллеры повышают эффективность функционирования солнечных панелей на 30-50 %.
  • Аккумуляторные батареи (АКБ) запасают энергию, ведь солнечные панели работают только в светлое время суток. Мы подробно поговорим о них в отдельной статье.
  • Реле управления внешними устройствами. В автономной системе они используются для включения и выключения групп устройств, на которые подаётся электроэнергия. Также реле применяются, например, для автоматического включения дизельного генератора в случае сильного снижения уровня заряда АКБ.

Кроме того, в систему могут входить дополнительные генераторы тока. Чаще всего—дизельный генератор, который играет роль аварийного, когда капризы погоды не позволяют солнечным батареям работать на полную мощность. Дизельный генератор целесообразнее использовать в системах с большим периодом времени отключения от сети (от нескольких суток и более).

Перед подбором компонентов системы необходимо рассчитать её технические характеристики — они будут определяться временем автономной работы установки, а также объёмом электроэнергии, который должны вырабатывать солнечные батареи. Оба параметра обуславливают стоимость системы, и при их выборе неопытные пользователи часто допускают досадные ошибки. Лучше всего доверить расчёт профессионалам.

ТИПЫ БАТАРЕИ

Производительность и долговечность солнечных батарей могут сильно различаться. Так, у недорогих китайских панелей КПД всего 4-5 %, а срок службы составляет 3-4 года. «Нормальные» батареи (в том числе китайские) имеют КПД 12-15 %, а срок службы — 25 лет.

У высококлассных производителей (Kyocera, Sharp, Panasonic, Samsung) КПД батарей может достигать 15-18 %, а срок службы измеряется десятками лет. Зато и стоят такие устройства на порядок дороже.

С каждым годом эффективность переработки солнечного света в электроэнергию растёт. Так, в 2014 г.

разработанные Panasonic солнечные панели HIT, представляющие собой пластины из монокристаллического кремния, который окружён сверхтонкой плёнкой из аморфного кремния, обеспечили рекордный КПД в 25,6 %. В ближайшие годы ожидается появление панелей с КПД выше 30%.

Солнечные панели изготавливаются из кремния и в зависимости от его структуры бывают трёх типов: монокристаллические, поликристаллические и из аморфного кремния. Все разновидности имеют свои особенности.

Монокристаллические панели принято считать самыми лучшими. У них высокий КПД (около 18 % у элементов, 15,5 % у собранных из них батарей), срок службы около 50 лет. Однако эти устройства сложны в изготовлении и дороже моделей других типов.

Поликристаллические панели состоят, грубо говоря, из осколков монокристалла. Отличаются меньшим КПД (15 %у элементов и 12 % у всей системы), срок службы составляет 20-25 лет. Зато они стоят дешевле монокристаллических.

Панели из аморфного кремния по своим характеристикам примерно соответствуют поликристаллическим (несколько лет назад аморфные устройства отставали по сроку службы, который составлял 5-10 лет, но у новых моделей параметры значительно улучшились).

Солнечные батареи различаются и по эффективности работы в разных условиях. Так, монокристалл и поликристалл хорошо функционируют при ярком солнечном освещении, а при облачности выработка энергии у них заметно падает.

Панели из аморфного кремния в пасмурную погоду работают немного лучше, чем устройства из монокристалла или поликристалла (при одинаково установленной мощности). Поэтому первые предпочтительнее во время малосолнечного и дождливого лета.

Кроме того, батареи из аморфного кремния менее зависимы от точности ориентации плоскости панели относительно угла падения солнечных лучей. Эффективны они и при косых лучах солнца. Кристаллические батареи рекомендуется размещать так, чтобы угол падения солнечных лучей был максимально близок к 90°.

Однако аморфники имеют меньший срок службы и занимают достаточно большую площадь при одинаковой с монопанелями мощности (из-за низкого КПД), поэтому с финансовой точки зрения их установка менее выгодна.

Солнечные батареи обычно монтируют на крыше. Лучше всего подходит южный скат, особенно если угол его наклона совпадает с географической широтой.

Также распространён вариант размещения на двух смежных скатах, развёрнутых в юго-западном и юго-восточном направлениях. В этом случае на каждый скат помещают половину батарей. При этом общий объём выработанной электроэнергии немного уменьшается, но увеличивается время работы панелей.

Когда оптимальное (в нашем случае — южное) направление использовать не получается, солнечные батареи можно разместить на скатах, развёрнутых на восток или запад. При этом придётся увеличить количество панелей, чтобы компенсировать снижение эффективности их работы.

В населённых пунктах с географической широтой 55-60° и больше солнечные батареи можно располагать вертикально — на стене или даже на заборе. Если не удаётся разместить их на имеющихся сооружениях, для установки выбирают поворотные стенды, позволяющие использовать солнечные лучи с максимальной эффективностью. Стоимость стенда, изготовленного фабричным способом, составляет 50-70 тыс.

руб., но можно сэкономить, уменьшив количество панелей, цена которых составляет по 10-20 тыс. руб. и более. Отдача от поворачивающихся панелей увеличивается примерно в 1,6 раза по сравнению с закреплёнными стационарно.

При круглогодичном использовании батарей их выгоднее размещать вертикально. Во-первых, зимой солнце не поднимается высоко над горизонтом и его лучи падают на вертикальную стену под углом, приближенном к прямому.

Читайте также:  Технология укладки штучного паркета

Во-вторых (и это даже важнее), вертикальное расположение позволяет решить проблему очистки панелей от снега. Вообще в странах со снежной зимой не рекомендуется устанавливать батареи под углом наклона к горизонту менее 40°, чтобы на них не скапливался снег.

Поэтому на плоской крыше солнечные батареи располагают под наклоном, на соответствующем основании-ферме.

Источник: http://StroyManual.com/perspektivyi-ispolzovaniya-solnechnyih-batarey/

Солнечные батареи: как работают и из чего состоят

Солнце – это неисчерпаемый источник энергии. Его можно использовать, сжигая деревья или нагревая воду в солнечных нагревателях, преобразуя полученное тепло в электроэнергию. Но есть устройства, превращающие солнечный свет в электричество напрямую. Это солнечные батареи.

Сфера применения

Есть три направления использования солнечной энергии:

  • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
  • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
  • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.

Солнечные батареи удобно применять там, куда нельзя подвести электричествок содержанию ↑

Принцип работы

Элементы солнечных батарей представляют собой пластинки из кремния толщиной 0,3 мм. Со стороны, на которую попадает свет, в пластину добавлен бор. Это приводит к появлению избыточного количества свободных электронов. С обратной стороны добавлен фосфор, что приводит к образованию «дырок».

Граница между ними называется p-n переход. При попадании света на пластину, он «выбивает» электроны на обратную сторону. Так появляется разность потенциалов. Вне зависимости от размера элемента, одна ячейка развивает напряжение 0,7 В.

Для увеличения напряжения, их соединяют последовательно, а для повышения силы тока – параллельно.

В некоторых конструкциях, для увеличения мощности, над элементами устанавливались линзы или использовалась система зеркал. С уменьшением стоимости батарей такие устройства стали неактуальными.

Максимальный КПД панели, а, следовательно, и мощность, достигается при падении света под углом 90 градусов.

В некоторых стационарных устройствах батарея поворачивается вслед за солнцем, но это сильно удорожает и утяжеляет конструкцию.

Принцип работы солнечной батареик содержанию ↑

Преимущества и недостатки применения батарей

У солнечных панелей, как и у любых устройств, есть достоинства и недостатки, связанные с принципом действия и особенностями конструкции.

Достоинства солнечных батарей:

  • Автономность. Позволяют обеспечить электроэнергией удаленные здания или светильники и работу мобильных устройств в походных условиях.
  • Экономичность. Для выработки электроэнергии используется свет солнца, за который не нужно платить. Поэтому ФЭС (фотоэлектрические системы) окупаются за 10 лет, что меньше срока службы, составляющего более 30. Причем 25–30 лет – это гарантийный срок, а фотоэлектростанция будет работать и после него, принося прибыль владельцу. Конечно, необходимо учесть периодическую замену инверторов и аккумуляторных батарей, но все равно, использование такой электростанции помогает экономить средства.
  • Экологичность. При работе устройства не загрязняют окружающую среду и не шумят, в отличие от электростанций, работающих на других видах топлива.

Кроме достоинств, у ФЭС есть недостатки:

  • Высокая цена. Такая система стоит довольно дорого, особенно с учетом цены на аккумуляторные батареи и инверторы.
  • Большой срок окупаемости. Средства, вложенные в фотоэлектростанцию, окупятся только через 10 лет. Это больше, чем основная масса других вложений.
  • Фотоэлектрические системы занимают много места – всю крышу и стены здания. Это нарушает дизайн сооружения. Кроме того, аккумуляторные батареи большой емкости занимают целую комнату.
  • Неравномерность выработки электроэнергии. Мощность устройства зависит от погоды и времени суток. Это компенсируется установкой аккумуляторных батарей или подключением системы к сети. Это позволяет в хорошую погоду днем продавать излишки электроэнергии электрокомпании, а ночью наоборот подключать оборудование к централизованному электроснабжению.

к содержанию ↑

Технические характеристики: на что обратить внимание

Главным параметром фотоэлементной системы является мощность. Напряжение такой установки достигает максимума при ярком свете и зависит от количества соединенных последовательно элементов, которое почти во всех конструкциях равно 36. Мощность зависит от площади одного элемента и количества цепочек по 36 штук, соединенных параллельно.

В аккумуляторных батареях есть допустимый ток зарядки, который нельзя превышать, иначе система выйдет из строя. Зная напряжение аккумуляторов, легко определить мощность, необходимую для зарядки. Она должна быть больше мощности солнечной электростанции, иначе в солнечный день часть энергии окажется неиспользованной.

Контроллер обеспечивает заряд аккумуляторов и также должен иметь мощность, позволяющую полностью использовать энергию солнца.

К инвертору подключается оборудование, получающее энергию от ФЭС, поэтому его мощность должна соответствовать суммарной мощности электроприборов.

Кроме мощности и напряжения, важно выбрать фирму-производителя. Такое оборудование приобретается на срок несколько десятков лет, поэтому экономить на качестве нельзя. Производители, давно работающие на рынке, это понимают и дорожат своей репутацией. Можно почитать отзывы о них в интернете и выбрать с самыми положительными.

к содержанию ↑

Виды солнечных батарей

Кроме размера и мощности, панели отличаются способом, которым изготавливаются из кремния отдельные элементы.

Внешний вид моно- и поликристаллических панелей

Элементы из монокристаллического кремния

Элементы солнечных батарей, изготовленные из монокристаллического кремния, имеют форму квадрата с закругленными углами. Это связано с технологией изготовления:

  • из расплавленного кремния высокой степени очистки выращивается кристалл цилиндрической формы;
  • после остывания у цилиндра обрезаются края, и основание из круга принимает форму квадрата с закругленными углами;
  • получившийся брусок разрезается на пластины толщиной 0,3 мм;
  • в пластины добавляются бор и фосфор и на них наклеиваются контактные полоски;
  • из готовых элементов собирается ячейка батареи.

Готовая ячейка закрепляется на основании и закрывается стеклом, пропускающим ультрафиолетовые лучи или ламинируется.

Такие устройства отличаются самым высоким КПД и надежностью, поэтому устанавливаются в важных местах, например, в космических аппаратах.

Фотоэлементы из мульти-поликристаллического кремния

Кроме элементов из цельного кристалла, есть устройства, в которых фотоэлементы изготавливаются из поликристаллического кремния. Технология производства похожа.

Основное отличие в том, что вместо кристалла круглой формы используется прямоугольный брусок, состоящий из большого количества мелких кристаллов различных форм и размеров.

Поэтому элементы получаются прямоугольной или квадратной формы.

В качестве сырья берутся отходы производства микросхем и фотоэлементов. Это удешевляет готовое изделие, но ухудшает его качество.

Такие устройства имеют меньший КПД – в среднем 18% против 20–22% у монокристаллических батарей. Однако вопрос выбора достаточно сложный.

У разных производителей цена одного киловатт мощности монокристаллических и поликристаллических панелей может быть одинаковой или в пользу любого вида устройств.

Фотоэлементы из аморфного кремния

В последние годы распространение получили гибкие батареи, которые легче жестких.

Технология их изготовления отличается от технологии изготовления моно- и поликристаллических панелей – на гибкую основу, обычно стальной лист, напыляются тонкие слои кремния с добавками до достижения необходимой толщины. После этого листы разрезаются, к ним приклеиваются токопроводящие полоски и вся конструкция ламинируется.

Солнечные батареи из аморфного кремния

КПД таких батарей примерно в 2 раза меньше, чем у жестких конструкций, однако, они легче и более прочные за счет того, что их можно сгибать.

Такие приборы дороже обычных, но им нет альтернативы в походных условиях, когда основное значение имеет легкость и надежность. Панели можно нашить на палатку или рюкзак, и заряжать аккумуляторы во время движения. В сложенном виде такие устройства похожи на книгу или свернутый в рулон чертеж, который можно поместить в футляр, напоминающий тубус.

Кроме зарядки мобильных устройств в походе, гибкие панели устанавливаются в электромобилях и электросамолетах. На крыше такие приборы повторяют изгибы черепицы, а если в качестве основы использовать стекло, то оно приобретает вид тонированного и его можно вставить в окно дома или теплицу.

к содержанию ↑

Контроллер заряда для солнечных батарей

У прямого подключения панели к аккумулятору есть недостатки:

  • Аккумулятор с номинальным напряжением 12 В будет заряжаться только при достижении напряжения на выходе фотоэлементов 14,4 В, что близко к максимальному. Это значит, что часть времени батареи заряжаться не будут.
  • Максимальное напряжение фотоэлементов – 18 В. При таком напряжении ток заряда аккумуляторов будет слишком большим, и они быстро выйдут из строя.

Для того чтобы избежать этих проблем необходима установка контроллера заряда. Самыми распространенными конструкциями являются ШИМ и МРРТ.

ШИМ-контроллер заряда

Работа ШИМ-контроллера (широтно-импульсная модуляция – англ. pulse-width modulation — PWM) поддерживает постоянное напряжение на выходе. Это обеспечивает максимальную степень заряда аккумулятора и его защиту от перегрева при зарядке.

МРРТ-контроллер заряда

МРРТ-контроллер (Maximum power point tracker – слежение за точкой максимальной мощности) обеспечивает такое значение выходного напряжения и тока, которое позволяет максимально использовать потенциал солнечной батареи вне зависимости от яркости солнечного света. При пониженной яркости света он поднимает выходное напряжение до уровня, необходимого для зарядки аккумуляторов.

Такая система есть во всех современных инверторах и контроллерах зарядки

к содержанию ↑

Виды аккумуляторов, используемых в батареях

Различные виды аккумуляторов, которые можно использовать для солнечной батареи

Аккумуляторы – важный элемент системы круглосуточного электроснабжения дома солнечной энергией.

В таких устройствах используются следующие виды аккумуляторов:

  • стартерные;
  • гелевые;
  • AGM батареи;
  • заливные (OPZS) и герметичные (OPZV) аккумуляторы.

Аккумуляторы других типов, например, щелочные или литиевые дорогие и используются очень редко.

Все эти виды устройств должны работать при температуре от +15 до +30 градусов.

Стартерные аккумуляторы

Самый распространенный тип аккумуляторов. Они дешевы, но обладают большим током саморазряда. Поэтому через несколько пасмурных дней батареи разрядятся даже при отсутствии нагрузки.

Недостатком таких устройств является то, что при работе происходит газовыделение. Поэтому их необходимо устанавливать в нежилом, хорошо проветриваемом помещении.

Кроме того, срок службы таких аккумуляторов до 1,5 лет, особенно при многократных циклах заряд-разряд. Поэтому в долгосрочной перспективе эти устройства окажутся самыми дорогими.

Гелевые аккумуляторы

Гелевые аккумуляторы –изделия, не требующие обслуживания. При работе отсутствует газовыделение, поэтому их можно устанавливать в жилой комнате и помещении без вентиляции.

Такие устройства обеспечивают большой выходной ток, имеют высокую емкость и низкий ток саморазряда.

Недостаток таких приборов в высокой цене и небольшом сроке службы.

AGM батареи

Эти батареи имеют небольшой срок службы, однако, у них есть много преимуществ:

  • отсутствие газовыделения при работе;
  • небольшими размерами;
  • большим количеством (около 600) циклов заряда-разряда;
  • быстрым (до 8 часов) зарядом;
  • хорошей работой при неполном заряде.

AGM батарея изнутри

Заливные (OPZS) и герметичные (OPZV) аккумуляторы

Такие устройства являются самыми надежными и имеют наибольший срок службы. Они обладают низким током саморазряда и высокой энергоемкостью.

Эти качества делают такие приборы наиболее популярными для установки в фотоэлементных системах.

к содержанию ↑

Как определить размер и количество фотоэлементов?

Необходимые размер и количество фотоэлементов зависит от напряжения, силы тока и мощности, которые нужно получить от батареи. Напряжение одного элемента в солнечный день равно 0,5 В. При облачности оно намного ниже.

Поэтому для зарядки аккумуляторов 12 В, соединяются последовательно 36 фотоэлементов. Соответственно, для аккумуляторов 24 В необходимо 72 элемента и так далее.

Общее их количество зависит от площади одного элемента и необходимой мощности.

Один квадратный метр площади батареи, с учетом КПД, может выдать приблизительно 150 Вт. Точнее можно определить по метеорологическим справочникам, показывающим количество солнечной радиации в месте установки гелиооэлектростанции или в интернете. КПД устройства указан в паспорте.

При изготовлении фотоэлектростации своими руками необходимое количество элементов определяется по мощности одного элемента в данном климате с учетом КПД.

Расчет количества солнечных батарей исходит из необходимого электричествак содержанию ↑

Эффективность солнечных батарей зимой

Несмотря на то что зимой солнце поднимается ниже, поток света уменьшается незначительно, особенно после выпадения снега.

Основных причин, по которым солнечные элементы зимой менее эффективны три:

  • Меняется угол падения лучей. Для того чтобы сохранять мощность, угол наклона батареи необходимо менять хотя бы раз в сезон, а лучше каждый месяц.
  • Снег, особенно влажный, налипает на поверхность устройства. Его необходимо убирать сразу после выпадения.
  • Зимой меньше продолжительность светлого времени суток, а также больше пасмурных дней. Изменить это невозможно, поэтому приходится рассчитывать мощность батареи по зимнему минимуму.

к содержанию ↑

Правила установки

Максимальная мощность панели достигается в положении, при котором солнечные лучи падают перпендикулярно. Это необходимо учитывать при установке. Важно также учесть, в какое время суток минимальная облачность. Если угол наклона крыши и ее положение не соответствуют требованиям, то оно исправляется регулировкой основания.

Между батареей и крышей должен быть воздушный зазор 15–20 сантиметров. Это необходимо для протекания дождя и предохранения от перегрева.

Фотоэлементы плохо работают в тени, поэтому следует избегать располагать их в тени от зданий и деревьев.

Электростанции из солнечных фотоэлементов – это перспективный экологически чистый источник энергии. Их широкое применение позволит решить проблемы с нехваткой энергии, загрязнением окружающей среды и парниковым эффектом.

Источник: https://LampaExpert.ru/alternativnye-istochniki/chto-takoe-solnechnye-batarei

Понравилась статья? Поделиться с друзьями:
Дизайн Дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector