Подбор и расчёт системы на солнечных батареях

Расчёт солнечных батарей

Приветствую вас на сайте е-ветерок.ру, сегодня я хочу вам рассказывать о том сколько нужно солнечных батарей для дома или дачи, частного дома и пр.

В этой статье не будет формул и сложных вычислений, я попробую донести всё простыми словами, понятными для любого человека.

Статья обещает быть не маленькой, но я думаю вы не зря потратите своё время, оставляйте комментарии под статьёй.

Самое главное чтобы определится с количеством солнечных батарей надо понимать на что они способны, сколько энергии может дать одна солнечная панель, чтобы определить нужное количество. А также нужно понимать что кроме самих панелей понадобятся аккумуляторы, контроллер заряда, и преобразователь напряжения (инвертор).

Расчёт мощности солнечных батарей

Чтобы рассчитать необходимую мощность солнечных батарей нужно знать сколько энергии вы потребляете. Например если ваше потребление энергии составляет 100кВт*ч в месяц (показания можно посмотреть по счётчику электроэнергии), то соответственно вам нужно чтобы солнечные панели вырабатывали такое количество энергии.

Сами солнечные батареи вырабатывают солнечную энергию только в светлое время суток. И выдают свою паспортную мощность только при наличие чистого неба и падении солнечных лучей под прямым углом. При падении солнца под углами мощность и выработка электроэнергии заметно падает, и чем острее угол падения солнечных лучей тем падение мощности больше.

В пасмурную погоду мощность солнечных батарей падает в 15-20 раз, даже при лёгких облачках и дымке мощность солнечных батарей падает в 2-3 раза, и это всё надо учитывать. При расчёте лучше брать рабочее время, при котором солнечные батареи работают почти на всю мощность, равным 7 часов, это с 9 утра до 4 часов вечера.

Панели конечно летом будут работать от рассвета до заката, но утром и вечером выработка будет совсем небольшая, по объёму всего 20-30% от общей дневной выработки, а 70% энергии будет вырабатываться в интервале с 9 до 16 часов.

Таким образом массив панелей мощностью 1кВт (1000ватт) за летний солнечный день выдаст за период с 9-ти до 16-ти часов 7 кВт*ч электроэнергии, и 210кВт*ч в месяц. Плюс ещё 3кВт (30%) за утро и вечер, но пускай это будет запасом так-как возможна переменная облачность.

И панели у нас установлены стационарно, и угол падения солнечных лучей изменяется, от этого естественно панели не будут выдавать свою мощность на 100%. Я думаю понятно что если массив панелей будет на 2кВт, то выработка энергии будет 420кВт*ч в месяц. А если будет одна панелька на 100 ватт, то в день она будет давать всего 700 ватт*ч энергии, а в месяц 21кВт.

Неплохо иметь 210кВт*ч в месяц с массива мощностью всего 1кВт, но здесь не всё так просто

Во-первых не бывает такого что все 30 дней в месяце солнечные, поэтому надо посмотреть архив погоды по региону и узнать сколько примерно пасмурных дней по месяцам. В итоге наверно 5-6 дней точно будут пасмурные, когда солнечные панели и половины электроэнергии не будут вырабатывать. Значит можно смело вычеркнуть 4 дня, и получится уже не 210кВт*ч, а 186кВт*ч

Так-же нужно понимать что весной и осенью световой день короче и облачных дней значительно больше, поэтому если вы хотите пользоваться солнечной энергией с марта по октябрь, то нужно увеличить массив солнечных батарей на 30-50% в зависимости от конкретного региона.

Но это ещё не всё, также есть серьёзные потери в аккумуляторах, и в преобразователей (инверторе), которые тоже надо учитывать, об этом далее.

Про зиму я пока говорить не буду так-как это время совсем плачевное по выработке электроэнергии, и тут когда неделями нет солнца, уже никакой массив солнечных батарей не поможет, и нужно будет или питаться от сети в такие периоды, или ставить бензогенератор. Хорошо помогает также установка ветрогенератора, зимой он становится основным источником выработки электроэнергии, но если конечно в вашем регионе ветренные зимы, и ветрогенератор достаточной мощности.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри домаЕщё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

Самый минимальный запас ёмкости аккумуляторов, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%.

Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%.

По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД.

Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%.

Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%, чтобы компенсировать эти потери.

Но и это ещё не все потери. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись.

PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности.

А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%. Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20%.

Расчёт солнечных батарей для частного дома или дачи

Если вы не знаете ваше потребление и только планируете скажем запитать дачу от солнечных батарей, то потребление считается достаточно просто. Например у вас на даче будет работать холодильник, который по паспорту потребляет 370кВт*ч в год, значит в месяц он будет потреблять всего 30.8кВт *ч энергии, а в день 1.02кВт*ч.

Также свет, например лампочки у вас энергосберегающие скажем по 12 ватт каждая, их 5 штук и светят они в среднем по 5 часов в сутки. Это значит что в сутки ваш свет будет потреблять 12*5*5=300 ватт*ч энергии, а за месяц “нагорит” 9кВт*ч.

Также можно почитать потребление насоса, телевизора и всего другого что у вас есть, сложить всё и получится ваше суточное потребление энергии, а там умножить на месяц и получится некая примерная цифра. Например у вас получилось в месяц 70кВт*ч энергии, прибавляем 40% энергии, которая будет теряться в АКБ, инверторе и пр.

Значит нам нужно чтобы солнечные панели вырабатывали примерно 100кВт*ч. Это значит 100:30:7=0,476кВт. Получается нужен массив батарей мощностью 0,5кВт.

Но такого массива батарей будет хватать только летом, даже весной и осенью при пасмурных днях будут перебои с электричеством, поэтому надо увеличивать массив батарей в два раза.

В итоге вышеизложенного в вкратце расчёт количества солнечных батарей выглядит так:

  • принять что солнечные батареи летом работают всего 7 часов с почти максимальной мощностью
  • посчитать своё потребление электроэнергии в сутки
  • Разделить на 7 и получится нужная мощность массива солнечных батарей
  • прибавить 40% на потери в АКБ и инверторе
  • прибавить ещё 20% если у вас будет PWM контроллер, если MPPT то не нужно
  • Пример: Потребление частного дом 300кВт*ч в месяц, разделим на 30 дней = 7кВт, разделим 10кВт на 7 часов, получится 1,42кВт. Прибавим к этой цифре 40% потерь на АКБ и в инверторе, 1,42+0,568=1988ватт. В итоге для питания частного дома в летнее время нужен массив в 2кВт.

    Но чтобы даже весной и осенью получать достаточно энергии лучше увеличить массив на 50%, то-есть ещё плюс 1кВт. А зимой в продолжительные пасмурные периоды использовать или бензогенератор, или установить ветрогенератор мощностью не менее 2кВт.

    Более конкретно можно рассчитать основываясь на данных архива погоды по региону.

    Стоимость солнечных батарей и аккумуляторов

    Цены на солнечные батареи и оборудование сейчас достаточно разнятся, одна и также продукция может по цене в разы отличаться у разных продавцов, поэтому ищите дешевле, и у проверенных временем продавцов. Цены на солнечные батареи сейчас в среднем 70 рублей за ватт, то-есть массив батарей в 1кВт обойдётся примерно в 70т.

    руб, но чем больше партия тем больше скидки и дешевле доставка.

    Качественные специализированные аккумуляторы стоят дорого, аккумулятор 12в 200Ач обойдётся в среднем в 15-20т.рублей.

    Я использую вот такие акб, про них написано в этой статье Аккумуляторы для солнечных батарей Автомобильные в два раза дешевле, но их надо ставить в два раза больше чтобы они прослужили хотябы лет пять. А так-же автомобильные АКБ нельзя ставить в жилых помещениях так-как они не герметичны.

    Специализированные при разряде не блолее 50% прослужат 6-10 лет, и они герметичные, ничего не выделяют. Можно купить и дешевле если брать крупную партию, обычно продавцы дают приличные скидки.

    Остальное оборудование наверно индивидуально, инверторы бывают разные, и по мощности, и по форме синусоиды, и по цене. Так-же и контроллеры заряда могут быть как дорогие со всеми функциями, в том числе с о связью с ПК и удалённым доступом через интернет.

    Источник: http://e-veterok.ru/095-solnehnye-batarei-vraschyot.php

    Расчет солнечных батарей

    На первый взгляд, солнечные энергосистемы на основе фотоэлектрических коллекторов является далеко не самой сложным комплексом.

    В состав систем электроснабжения дачи или загородного коттеджа, выполненной на базе солнечных батарей, входят всего четыре основных компонента – фотоэлектрическая панель, аккумуляторная батарея, контроллер заряда АКБ и инвертор для преобразования напряжения. Но на самом деле подбор элементов системы электроснабжения, которая бы отличалась высокой эффективностью и согласованностью работы своих составляющих при минимальных капиталовложениях, представляется не самой простой задачей. Поэтому подбор элементов системы электроснабжения, выбор солнечной батареи и их монтаж однозначно стоит доверить специалистам.

    Проектируя любые солнечные энергосистемы, специалист последовательно выполняет следующие этапы работ:

    • Определение профиля освещенности и подбор оптимального наклона солнечных батарей на месте размещения;
    • Расчет солнечных батарей на основании показателей необходимой мощности, определяемой картиной энергопотребления объекта;
    • Выбор солнечных батарей в нужном количестве, которое необходимо для эксплуатации системы в рассчитанном режиме, с учетом последовательного и параллельного соединения ее элементов.

    Давайте несколько детальнее разберем смысл и содержание каждого этапа. Это как минимум позволит адекватно оценить собственные силы тем, кто полагает, что сможет самостоятельно выполнить проектирование и подобрать состав электроснабжения дачи или загородного коттеджа на основе солнечных батарей.

    Читайте также:  Арка из гипсокартона своими руками – как правильно возвести

    Профиль освещенности и угол наклона солнечной батареи

    Профиль освещенности позволяет определить поток светового излучения, который поступает на поверхность солнечной батареи на протяжении светлого времени суток. Очевидно, что эта величина напрямую связана с мощности панели.

    При этом она является переменной и зависит от целого ряда факторов: ориентации солнечной батареи в пространстве (как в вертикальной плоскости, так и горизонтальной), времени года, климатических особенностей местности и других.

    Выбор оптимального угла наклона панели солнечной энергосистемы имеет очень важное влияние на весь КПД ее работы.

    Если планируется использовать солнечные батареи для частного дома круглогодично, угол ее наклона относительно вертикали стоит задать на 15° больше географической широты размещения жилого объекта. Для Москвы и столичного региона эта величина будет равна приблизительно 70° с ориентацией лицевой стороны батареи в южном направлении.

    Значительный угол наклона обеспечит также высокое качество чистоты поверхности фотоэлементов – снег и пыль будут сходить с нее под силой собственного веса.

    Расчет солнечных батарей на основании показателей необходимой мощности – еще один непростой этап проектирования солнечных энергосистем для частных домов или иных объектов. Его выполнение требует специфических знаний и опыта. В противном случае, ошибки повлекут за собой либо низкую эффективность эксплуатации всего комплекса либо напрасные расходы со стороны владельца.

    Расчет и выбор солнечных батарей выполняется по определенному алгоритму с рядом допущений:

    • принять в расчет, что летом солнечные панели функционируют с максимальной эффективностью на протяжении 7 часов в сутки;
    • определить суточное энергопотребление объекта (берется среднее значение по показаниям счетчика);
    • величину суточного энергопотребления делим на 7 часов работы батареи и получаем значение необходимой мощности;
    • умножить получившееся число на 1,4, чтобы учесть потери энергии в других элементах солнечной энергосистемы – аккумуляторе и инверторе;
    • в случае, если система будет оснащена PWM-контроллером, прибавить еще 20% необходимой мощности.

    За расчетом солнечных батарей для дома следует подбор аккумулятора по параметрам его емкости, минимального времени зарядки и ценовой категории. Затем подбирается число фотоэлементов панели, соединенных последовательно и параллельно для оптимального режима работы всей системы.

    Выбор солнечной батареи и других элементов системы электроснабжения

    Как Вы уже наверняка поняли, ключевой фактор достижения желаемой цели по успешному воплощению эффективной солнечной энергосистемы – профессионализм и богатый опыт выполнения всех этапов работ.

    Поэтому мы рекомендуем Вам записать контакты компании «АССОЛАР».

    Наши специалисты выполняет на любом объекте в Москве и Московской области весь комплекс необходимых работ «под ключ» – от разработки проекта комплекса электроснабжения на основе фотоэлементов до его настройки и запуска.

    Выбор солнечных батарей или готовых комплектов систем энергоснабжения частных домов, представленных на нашем сайте – это высокая надежность и рациональные инвестиции в автономные системы на основе современных технологий с возобновляемыми источниками энергии. Это залог того, что даже в самых невообразимых ситуациях все зависящие от электричества блага цивилизации Вам будут по-прежнему доступны.

    Источник: https://as-solar.ru/solnechnye-energosistemy-raschet-solnechnykh-batarej

    Как рассчитать солнечную электростанцию и выбрать оборудование для нее?

    Как рассчитать солнечную электростанцию и выбрать оборудование для нее? Очень просто!

    Расчет небольших солнечных электростанций можно сделать достаточно просто вооружившись листом бумаги и ручкой. В этой статье мы расскажем основные принципы подбора оборудования для бытовых солнечных электростанций.

    ВАЖНО:  комплектация солнечной системы никак не связана с площадью дома. Она зависит только от мощности подключаемого оборудования и количества потребляемой энергии.

    Основными элементами солнечной электростанции являются:

    ·         Солнечные панели – они генерируют электроэнергию, и чем они мощнее и их больше, тем больше электроэнергии можно получить в течении дня.

    ·         Аккумуляторные батареи – в них происходит накопление элеткроэнергии, которую можно использовать в отсутствии солнца (ночью), когда выработки электричества на солнечных панелях нет.

    ·         Контроллер заряда аккумулятора – это устройство, которое позволяет обеспечить правильные режимы заряда аккумулятора. Выбор этого устройства, как правило, чисто технический момент за исключением выбора типа контроллера MPPT или ШИМ. Иногда контроллер заряда может быть встроен в инвертор.

    ·         Инвертор преобразователь напряжения – это устройство преобразует постоянный ток на аккумуляторах в переменный 220В, который используется во всех бытовых электроприборах. Мощность инвертора ограничивает максимальную мощность электропотребителей, которые могут быть подключены к системе.

    Теперь подробно остановимся на каждом из этих элементов системы, для того, чтобы понять, какое именно оборудование и в каком количестве, нам потребуется.

    Как выбрать инвертор – преобразователь напряжения

    Подбор оборудования для системы начинается с выбора инвертора. Все инверторы делятся на 2 группы по форме выходного сигнала – чистый синус (форма сигнала в виде синусоиды) и модифицированный синус (форма сигнала в виде ступенек или трапеций).

    Если к системе будет подключаться любая индуктивная нагрузка: двигатели , компрессоры и т.д. то инвертор должен быть обязательно с чистым синусом на выходе. Т.е. если вы планируете подключать холодильник, насос, электроинструмент и т.д.

    то инвертор должен на выходе выдавать чистую синусоиду.

    Если же подключаемая нагрузка это телевизоры, зарядные устройства, освещение и т.д. то модифицированный синус вполне подойдет.

    Таким образом чистый синус имеет более широкую область применения, но и цена у него существенно дороже чем у инверторов с модифицированным синусом.

    Итак, мы определили тип инвертора, который нам нужен, далее нужно определить его номинальную мощность. Для того, чтобы это сделать, нужно просуммировать мощность всех электроприборов которые могут быть включены одновременно. Мощность каждого прибора можно найти в инструкции или на самом устройстве.

    Например: холодильник (300Вт) + телевизор (70Вт) + насос (400Вт) + микроволновка (1000Вт) = 300Вт+70Вт+400Вт+1000Вт = 1770Вт. Соответственно в данном случае инвертор должен иметь номинальную мощность более 1770Вт. Кроме того важно понимать, что у некоторых приборов существуют пусковые токи, которые кратковременно появляются при запуске оборудования.

    Эти пусковые токи могут быть в 5-7 раз больше чем номинальные. Это важно учитывать при выборе инвертора. Благо у каждого инвертора есть запас прочности – пиковая нагрузка и зачастую эта характеристика в 2 раза больше номинальной мощности.

    Поэтому в данном примере инвертора номинальной мощностью 2000Вт хватит для обеспечения питанием указанных приборов, даже с учетом того, что у холодильника в момент пуска мощность может быть 300Вт*7=2100Вт.

    Как рассчитать солнечные панели

    Следующий вопрос  – как рассчитать сколько солнечных батарей нужно установить, чтобы их было достаточно для обеспечения нужным количеством электроэнергии.

    Прежде чем ответить на этот вопрос, давайте выясним, сколько же электроэнергии мы потребляем. Это можно сделать умножив мощность электроприборов на время их работы, например: лампочка мощностью 50Вт работая в течении 3х часов, израсходует 50вт*3ч=150Вт*ч электроэнергии.

    Таким образом, можно посчитать полное электропотребление за сутки, но есть и более простой способ – посмотреть показания электросчетчика за месяц и разделить на количество дней в месяце. К примеру: счетчик за месяц (30 дней) накрутил 150кВт*ч электроэнергии. В среднем за сутки получается 5кВт*ч электроэнергии.

     Это значит, что массив солнечных панелей должен за солнечный день успеть сгенерировать такое же количество электроэнергии.

    Солнечные панели бывают различного размера и мощности, и в каждом конкретном случае бывает удобнее использовать панели определенного размера, но, как правило, для средних и больших систем используются панели 250-300Вт, поскольку они наиболее оптимальны с точки зрения монтажа.

    Мощность панели это как раз то количество электроэнергии, которая она вырабатывает при полной освещенности. Т.е. если на солнечную панель 250Вт в течении 3х часов под прямым углом будет светить солнце, то она выработает 250Вт*3ч=750Вт*ч электроэнергии.

    Конечно в течении дня может быть достаточно облачно и мало света, поэтому та же самая панель при облачной погоде может вырабатывать в 3-4 раза меньше электроэнергии чем в солнечную погоду.  Таким образом для грубой оценки такой подход в расчетах может подойти.

     Например если нужна система, которая летом должна вырабатывать 5кВт*ч электроэнергии в день, при условии, что в среднем в течении 4х часов на панель будет светить солнце (4ч*250Вт=1000Вт), то нам понадобится не менее 5 таких панелей.

    Для более точного расчета необходимо использовать так называемые таблицы солнечной инсоляции, в которых указаны средние значения солнечной освещенности на 1 кв.м. за сутки в разных регионах нашей страны. К примеру в Астрахани в июне на поверхность наклоненную на 35градусов к горизонту за месяц проникает 197.7 кВт*ч энергии.

    За сутки в среднем получится около 6.6кВт*ч энергии. Конечно, не вся эта энергия будет преобразована в электрическую. У каждого модуля есть КПД (коэффициент полезного действия, не путать с КПД ФЭПа), в среднем это 16.5-17%. Это значит что нужно 6.6 кВт*ч умножить на 17%, в результате чего получим 1.

    12кВт*ч в сутки с одного квадратного метра солнечных панелей. Зная нужное нам количество энергии в сутки, к примеру 5кВт*ч, мы можем определить нужную нам площадь солнечных панелей – 5кВт*ч/1.12кВт*ч=4.46м.кв. Солнечный модуль 250Вт имеет размеры 1650х990мм и площадь равную 1.64м.кв..

    Таким образом 3х модулей по 250Вт будет достаточно для генерации 5кВт*ч электроэнергии в сутки на территории Астрахани в июне.

    По такому принципу делаются профессиональные расчеты систем, поскольку нет более точных данных по работе солнечных панелей, чем статистические.

    Сколько нужно аккумуляторов

    Количество энергии которое может быть запасено в аккумуляторной батарее можно оценить по формуле «емкость умножить на номинальное напряжение». Например аккумулятор емкостью 100Ач и напряжением 12В, может запасти в себе 100Ач*12В=1200Вт*ч электроэнергии.

    Зная, сколько энергии у нас расходуется в сутки, мы можем определить какая часть этой энергии расходуется из аккумуляторов в отсутствии солнца.

    Но поскольку срок службы аккумуляторов на прямую зависит от глубины его разряда, и не рекомендуется разряжать аккумуляторы ниже 50%, мы рекомендуем делать расчет аккумуляторов исходя из суточного потребления, например в сутки потребляется 5кВт*ч, это 5000Вт*ч. Разделив потребление на 12В, получим требуемую емкость банка аккумуляторов 5000Вт*ч/12В=416Ач.

    Т.е. 4 аккумулятора по 100Ач гарантированно не разрядятся полностью в течении дня, что позволит увеличить срок их службы, а также обеспечат необходимым количеством электроэнергии в отсутствии солнца – ночью.

    Как выбрать контроллер заряда аккумулятора и что это такое можно прочитать по адресу: http://oporasolar.ru/articles/11066-kontrollery-zaryada . В этой статье мы не будем останавливаться на данном этапе.

    Зима-Лето

    Зимой солнца сильно меньше чем летом, поэтому если вы хотите полностью автономную систему, то все расчеты необходимо делать основываюсь на минимальных значениях солнечной инсоляции, которые, как правило наблюдаются в декабре-январе.

    Так вы гарантированно обеспечите себе автономное питание в течении года.

    К примеру в той же Астрахани, значение солнечной инсоляции в декабре в 4 раза меньше чем в июне, поэтому для автономной работы системы зимой, потребуется в 4 раза больше солнечных панелей.

    Наличие внешней сети или генератора

    Если у вас есть возможность подключиться к сети или генератору, то это позволит не покупать большое количество солнечных панелей, для обеспечения питанием в зимнее время. При длительном отсутствии солнца можно включить сеть или генератор для зарядки аккумуляторов не небольшой период времени до полной зарядки, и продолжать получать энергию от солнца.

    На сегодняшний день есть большое количество инверторов со встроенным зарядным устройством аккумуляторов, вплоть до автоматического переключения на питание от сети в случае сильного разряда аккумуляторных батарей. Такие инверторы наиболее удобны в использовании и достаточно просты в подключении.

    Читайте также:  Особенности возведения сруба бани своими силами

    Таким образом, мы разобрались как можно сделать расчет солнечной электростанции, а если у вас остались вопросы вы можете позвонить нам и мы поможем вам разобраться!

    OporaSolar, Сапожников Д.А.

    Источник: https://oporasolar.ru/a187049-kak-rasschitat-solnechnuyu.html

    Расчет средней производительности солнечной батареи

    Существует довольно простая методика позволяющая рассчитать количество электроэнергии, выдаваемое солнечной батареей. Результат этого расчета позволит получить среднее значение  количества энергии вырабатываемой солнечной єлектростанцией за год. Чтобы произвести расчет солнечной батареи воспользуемся формулой:

    Где:

    • I — интенсивность солнечного излучения, попадающее на поверхность Земли в горизонтальной плоскости. Значение можно выбрать, воспользовавшись картой интенсивности солнечной радиации:
    • Ко — поправочный коэффициент пересчета суммарного потока солнечной энергии с горизонтальной плоскости на поверхность солнечной батареи. Данные можно взять и следующей таблицы:
    • Vмодуля – номинальная мощность солнечной батареи. Указывается в паспортных данных;
    • Кпот – коэффициент, учитывающий потери солнечной батареи при преобразовании и передаче электроэнергии;
    • Uиспыт — интенсивность солнечной радиации, при которой фотоэлектрические модули тестируются (условия STC), то есть 1000 Вт/м2.

    Потери энергии в солнечных батареях

    Общие потери энергии при преобразовании солнечного излучения в фотоэлектрической системе включают в себя :

    • потери в проводах – 1%
    • потери в инверторе – 3-7%
    • потери связанные с ростом температуры модуля  — 4-8%
    • потери в процессе работы солнечной батареи в период низкого уровня солнечного излучения — 1-3%
    • потери связанные с затенением и загрязнением солнечных панелей – 1-3% (в случае неоптимального ориентирования эти потери могут быть значительно выше)
    • потери шунтирующих диодов – 0,5%

    При оптимальной компоновке оборудования и  эффективность солнечной системы в 85% считается очень хорошей. На практике возможны случаи, когда общие потери могут достигать значения 25-30 %  из-за плохого качества оборудования или неправильного подбора элементов системы а так же других факторов.

    Пример расчёта производительности солнечных батарей

    Для примера произведем расчет солнечной фотоэлектрической системы со следующими параметрами:

    • Общая номинальная мощность солнечных батарей – 10 кВт;
    • Регион – Киев;
    • Угол ската кровли 45º и отклонение от южного направления 25º;
    • Общие потери равны 17%.

    Воспользовавшись данными из карты солнечной интенсивности выбираем значение 100 кВт·ч/(м²·год) соответствующее 4-й зоне. Поправочный коэффициент пересчета суммарного потока солнечной энергии будет равен 1,10.

    Подставив значение, получаем:

    I = 1000×1,1×10×0,83/1 = 9130 кВт·ч/год

    Данный расчет солнечной батареи дает возможность приблизительно оценить среднее количество энергии способное выработать фотоэлектрическая система за год.

    Источник: http://SolarSoul.net/raschet-solnechnoj-batarei

    Расчёт необходимой солнечной батареи для коттеджа

    Солнечные батареи становятся с каждым годом все более востребованным видом автономных систем, являющихся альтернативой традиционного электроснабжения. Особенно популярны установки солнечных коллекторов в загородной зоне, на дачах где отсутствует подача электроэнергии. 

    Расчеты мощности

    При покупке солнечных батарей для дома, владельцев, прежде всего, интересует, какой объем мощности батарей понадобится для того, чтобы удовлетворить все насущные потребности. Так как система может обеспечить электроэнергией много приборов лишь в том случае, когда энергопотребление не будет выше количества энергии, производимой генератором.

    Система состоит из основных 4 компонентов:

    Аккумуляторов;

    Контролера заряда;

    Фотоэлектрических панелей;

    Инвертора.

    Расчет мощности солнечных батарей для дома актуален, прежде всего, тем, что при всех финансовых и материальных ограничениях важно знать, какого результата ожидать от батарей и стоит ли вообще покупать подобную систему энергоснабжения. Для каждого режима использования электроэнергии существует своя система расчета.

    За основу расчетов необходимой энергии берутся данные о возможности Солнца (мощность солнечного излучения), а так же стоит рассчитать сколько энергии планируется потреблять. Это можно сделать самостоятельно, посмотрев в таблицу «Расчет потребления электроэнергии»:

    При этом учитываются:

    Регион;

    Погодные условия;

    Угол наклона панели.

    Устанавливая угол наклона панели важно определиться, будет использование батарей круглогодичным или предполагается их эксплуатация только в летний период. Предпочтительно устанавливаемый для панелей угол наклона на 15° больше, чем географическая широта. Чем больше наклон, тем эффективнее выработка энергии.

    Расчет солнечных батарей для дома желательно проводить, имея данные и по горизонтальной, и по вертикальной установкам панелей.

    Процесс расчета

    Для того чтобы оценить производительность солнечных батарей, желательно взять для расчетов самый худший месяц зимой (январь в Москве) и летний максимум (июль в Москве).

    Стандартный поток солнечного света при 25° в 1 кВТ/м² — это номинальная мощность солнечной панели. Взяв месячную инсоляцию, и умножив ее на соотношение мощностей максимальной инсоляции и батареи можно получить оценку выработки батареи за конкретный месяц.

    Выработка фотоэлектрических панелей рассчитывается по формулам:

    1. Eсб = Eинс х Pсб х η / Pинс

    Eсб — энергия солнечной батареей;

    Eинс — инсоляция 1 м² (конкретный месяц из таблицы);

    η — КПД передачи электрического тока;

    Pсб — номинальная мощность батареи;

    Pинс — максимальная мощность инсоляции 1 м² земной поверхности.

    Так же можно делать расчет мощности солнечных батарей, необходимой для месячного энергопотребления.

    2. Рсб = Ринс х Есб/ (Еинс х η)

    В расчет КПД можно заложить потери (от 10 до 25%), которые могут происходить от дешевых контролеров заряда, которые, как правило, либо занижают выходное напряжение батареи или попросту игнорируют излишки энергии.

    2 Формула удобна, если необходимо рассчитать номинальную мощность солнечных батарей, учитывая конкретные условия инсоляции, но она не очень подходит для расчетов возможностей на весь год.

    1 Формула позволяет рассчитать мощность для различных режимов энергоснабжения батарей с разной номинальной мощностью.

    Пример расчета для Москвы

    Предположим, что нужно рассчитать наклон 70°, но для Москвы нет таких данных, но есть данные угла наклонов панели 40° и 90°.

    В этом случае между этими данными берется среднее значение и округляется до 1 кВт/ч на меньшее число. При расчете мощности учитывается суммарный КПД контролера и инвертора – 91%.

    Значение «режим дефицита» говорит о том, что мощности не хватит даже для постоянной работы самой системы.

    Анализ расчетов

    Учитывая погодные особенности и номинальную мощность батарей можно сделать вывод, что 400 Вт батареи в Москве будет недостаточно даже на поддержку аварийного режима в летнее время. Хотя для дачи превышение выработки аварийного уровня 80% можно считать допустимым вариантом, особенно при непостоянной работе инвертора, а только при необходимости подачи электроэнергии.

    Маломощные системы не предназначены для круглосуточного бытового электроснабжения даже летом. Так как энергия в таких системах является критически важной для собственного потребления контролера заряда и инвертора. В зимнее время мощности солнечного коллектора будет не достаточно для работы всех электроприборов дома, но в летнее вполне допустимо, что электроснабжение будет бесперебойным.

    Возможности батарей из расчетов мощности для Москвы:

    500 Вт – дает аварийный минимум 80% с мая до конца августа;

    600 Вт – середина марта – сентябрь;

    800 Вт – с превышением аварийного уровня (кроме декабря и января) обеспечивает напряжение с марта по сентябрь;

    1 кВт – обеспечивает базовое потребление электроэнергии почти весь год, но в зимний период (декабрь и январь) энергии может не хватать;

    1.2 кВт – обеспечивает умеренный режим в июле, в марте – сентябре режим энергопотребления базовый. Аварийный минимум приходится на период ноябрь – январь;

    2 кВт – поддерживает комфортный режим, или близкий к нему в период май – август и базовый с февраля месяца по август. Но в длинные темные месяцы данной мощности солнечного коллектора может быть недостаточно;

    3.2 кВт – обеспечивает комфортный режим на все длинные дни и в течение года позволяет рассчитывать на аварийный минимум;

    5.3 кВт – батареи номинальной мощности, позволяющие практически без ограничений использовать электроэнергию в период май – август и круглый год в базовом режиме;

    8 кВт – мощность солнечной батареи, обеспечивающая использование электричества круглый год в умеренном режиме;

    13.5 кВт – круглогодичный комфортный режим энергопотребления.

    Основные критерии выбора оборудования

    На обеспечение электроснабжения от солнечных коллекторов влияют:

    Продолжительность дня и ночи (ночью солнечные системы прекращают подавать энергию);

    Погодных условий (в пасмурные дни уровень энергообеспечения спадает);

    Сезонности (когда дни становятся короче ночей).

     В связи с этим рекомендуется выбирать емкость аккумуляторов 12 вольтовых:

    Только для летнего периода — не менее 400 А/ч на 1 кВт/ч суточного потребления в минимальном режиме;

    Для круглогодичного энергопотребления – не менее 800 А/ч на 1 кВт/ч в минимальном режиме потребления.

     При выборе панели учитывается три основных фактора:

    Геометрия;

    Тип фотоэлементов;

    Номинальное выходное напряжение.

    Когда стоит вопрос: «приобретать одну большую панель или несколько маленьких», наш совет — лучше одну. Маленькие панели хорошо устанавливать там, где нет возможности установить большую панель (размер ее не превышает 1,5 – 2 метров). В этом случае площадь соединений будет меньше, а уровень надежности повысится.

    При выборе напряжения солнечной батареи рекомендуется останавливать на 24 вольтовых панелях, так как у них вдвое меньше рабочие токи, чем у 12 вольтовых панелей той же мощности.

    Наиболее часто предлагаемые типы фотоэлементов:

    На монокристаллическом кремнии;

    На поликристаллическом кремнии.

     Монокристаллический тип дороже, но его преимущества намного выше поликристаллического.

    Если суммарная мощность панелей будет превышать мощность инвертора, это в разы оправдается даже с учетом постоянной мощной нагрузки и мощного аккумуляторного блока.

    При выборе размещения панелей учитываются ориентирование дома по сторонам света и его «посадки» на местность. Традиционной ориентацией считается размещение панелей на юг.

    Сейчас не проблема приобрести систему отслеживания Солнца. Будут оправданы расходы на такое дополнительное оборудование для солнечного коллектора или нет – решение сугубо индивидуальное.

    Важно при выборе панелей учитывать характеристики контролеров, которые различают по типам контролеров зарядов и мощности. В некоторых случаях эффективнее устанавливать мультивольтажные контролеры (рассчитанные на несколько напряжений).

    При расчете важно учитывать срок эксплуатации системы, который без существенного понижения КПД может продолжаться 20 – 25 лет.

    Стоимость системы может быть разной в зависимости от комплектующих: аккумуляторных батарей, фотомодулей и инверторов. Примерно цена 1 кВт мощности варьируется в пределах 2,5 – 3 €.

    Какую систему брать для дома, сколько средств потратить на ее приобретение и будут ли эти затраты окупаемы подсчитать не так уж сложно.

    Источник: http://www.eco-nrg.ru/raschyot-neobhodimoj-solnechnoj-batarei-dlya-kottedgha

    Калькулятор расчета мощности фотоэлектрической системы

    Все гелиосистемы подразделяются на два вида:

    • Полностью автономные;
    • Соединенные с электросетью.

    Причем второй тип систем в свою очередь делится на два подвида. К одному относят комплексы без аккумуляторных батарей, которые подключаются к энергосети при помощи сетевого инвертора. Такие гелиосистемы не имеют запаса энергии на случай отключения внешнего питания.

    Второй подвид систем включает в себя гибридные батарейно-сетевые инверторы. Они вырабатывают солнечную энергию даже при наличии внешней сети. Эти установки считаются резервными.

    При недостатке гелиоэнергии они используют ресурсы внешней сети, если же солнечной энергии вырабатывается слишком много, то ее избыток отдается в сеть.

    Таким образом, центральная электросеть играет роль своеобразного аккумулятора с бесконечной емкостью.

    Независимые гелиосистемы

    В этом расчете рассматривается полностью независимая от внешних энергоисточников система. Подобные установки очень востребованы на разного рода удаленных или мобильных объектах, к которым нецелесообразно (или невозможно) подводить линии электропередач.

    Главными элементами такой автономной системы являются:

    • Солнечные батареи;
    • Зарядный контроллер;
    • Аккумулятор;
    • Коммутационные кабели.

    Если потребляющая нагрузка работает от переменного напряжения, то необходим и соответствующий инвертор, поскольку фотобатареи вырабатывают постоянный ток.

    Функционирует такая система по традиционному принципу. В светлое время суток АКБ заряжаются от солнечной энергии.

    Контроллер регулирует этот процесс, соблюдая величины зарядных напряжений на каждой стадии и используя при необходимости температурную компенсацию.

    При необходимости солнечные батареи питают дневные нагрузки, а нагрузки, работающие ночью, питаются исключительно от АКБ. Для потребителей переменного тока задействуется инвертор.

    Для обеспечения надежного энергоснабжения нагрузок и гарантии работоспособности всей системы выбор компонентов должен производиться на основе специальных расчетов. Проводятся эти расчеты в несколько этапов.

    Читайте также:  Дизайн из гипсокартона – неограниченные возможности

    Определение общей нагрузки

    Первый этап – составление перечня всех нагрузок. Удобнее всего это сделать при помощи таблицы. Причем в столбцах должны быть указаны не только названия приборов и энергопотребителей (например, лампочки), но и мощности нагрузок, их среднесуточная продолжительность работы и число однотипных потребителей.

    Второй этап – оптимизация получившегося списка.

    Дело в том, что электроэнергия в полностью автономной системе довольно дорого вырабатывается, поэтому все не самые необходимые приборы (особенно очень мощные) целесообразнее питать от генератора.

    В перечне стоит оставить только максимально энергосберегающие нагрузки. К примеру, люменисцентные и светодиодные лампы вместо классических ламп накаливания. А холодильник должен относиться к классам А++, А+ или А.

    Подобные действия влекут за собой некоторые затраты, но все эти расходы окупятся и при покупке системы (потребуются менее мощные компоненты), и при дальнейшей ее эксплуатации. Более того, целесообразнее вообще использовать только нагрузки постоянного тока.

    Это позволит, во-первых, отказаться от инвертора и избежать энергопотерь на нем (КПД любого инвертора не 100%, а примерно 85-90%), а во-вторых, повысить надежность и безопасность всей системы.

    Такой эффект будет достигнут за счет уменьшения числа составных элементов и отсутствия опасного напряжения в 220 В.

    Расчет среднесуточной нормы потребления

    Используя оптимизированный перечень, можно рассчитать среднюю норму потребления за сутки (в кВт*ч). Для этого для каждого типа нагрузок нужно перемножить мощность прибора, их количество и среднесуточную продолжительность использования.

    Полученные произведения складываются. Итог – объем энергопотребления за сутки. Если приборы функционируют круглые сутки, то суточное потребление нужно посмотреть в паспорте (так, для холодильников часто указывают годовое энергопотребление).

    К примеру, если от солнечной энергии планируют питать телевизор, холодильник и лампы освещения, расчет будет выглядеть следующим образом.

    Телевизор: мощность – 30 Вт, время работы – 4 часа/сутки; холодильник: потребление 600 Вт*ч/сутки; лампы (3шт.): потребление – 15 Вт, время работы – 6 часов/сутки. Итого: 30 Вт*4 часа + 600 Вт*ч + 15 Вт*3 шт.

    *6 часов = 990 Вт*ч. Соответственно, месячное потребление составит около 30 кВт*ч.

    Нагрузки, работающие от переменного тока, рассчитываются отдельно. Для них нужно делать запас в 5-15% потребления (это необходимо для учета потерь на инверторе).

    Определение емкости АКБ

    После определения нормы потребления можно рассчитать нужную емкость АКБ.

    Для этого надо выбрать напряжение номинала аккумуляторов, а также указать, сколько пасмурных дней подряд система должна работать без внешней подзарядки и какова при этом должна быть глубина разряда АКБ.

    Как правило, глубина разряда не должна превышать 30-50%. Такой подход позволяет значительно увеличить рабочий ресурс аккумуляторов.

    Расчетную норму суточного потребления надо умножить на число пасмурных дней. Полученная величина будет равна выбранному проценту глубины разряда АКБ от полного уровня заряда. Соответственно, полная емкость определяется на основе этого значения.

    Общеизвестно, что на емкость аккумуляторов сильно влияет температура, поддерживаемая в помещении, где они находятся. При низких температурах емкость ощутимо понижается.

    Данный процесс обратим, иными словами, при повышении температур до нормальных емкость восстанавливается до паспортного значения.

    Однако нужно помнить, что повышение температуры выше рабочего диапазона, указанного производителем, приведет к выходу АКБ из строя. Поправки на этот процесс должны быть заложены при расчете требуемой емкости.

    Для получения итоговой емкости аккумуляторов надо умножить расчетное значение заключенной в АКБ энергии на коэффициент АКБ (см. таблицу) и разделить результат на напряжение АКБ. Полученное число следует округлить в большую сторону до стандартных емкостей аккумуляторов. Требуемая емкость набирается за счет последовательно-параллельных соединений АКБ.

    Температура Коэффициент
    25°С 1
    20°С 1,03
    15°С 1,1
    10°С 1,2
    5°С 1,28
    0°С 1,36
    -5°С 1,5

    Определение мощности инвертора

    Следующий этап – расчет мощности инвертора (если он есть). Этот параметр должен на 25-30% превышать суммарную пиковую мощность нагрузок, запускаемых единовременно. Дело в том, что некоторые приборы (холодильники, насосы, вообще вся техника с двигателем) имеют достаточно значительную стартовую мощность пуска.

    Определение суммарной мощности массива фотомодулей

    Это последний этап расчета автономной гелиосистемы.

    Суммарная мощность фотомодулей зависит от:

    • Географического расположения объекта;
    • Схемы работы (ежедневно, на выходных и т.д.);
    • Времени использования (лето, зима, круглогодичная эксплуатация, межсезонье);
    • Возможности оптимального позиционирования солнечных батарей (для максимальной энерговыработки);
    • Наличия элементов пейзажа или рельефа, которые могли бы препятствовать попаданию солнечных лучей на поверхность фотомодулей (на протяжении всего дня или в отдельные часы);
    • Возможности использования передвижной платформы, отслеживающей положение солнца.

    Рассмотрим случай оптимально ориентированных модулей без следящей системы, поверхность которых не затеняется в течение всего дня. Для получения нужного количества энергии на протяжении всего периода эксплуатации нужно проводить расчет исходя из наихудших условий инсоляции. При круглогодичном использовании такие условия будут в декабре.

    В этом месяце инсоляция минимальна, так как световой день очень короток и очень много облаков (для большинства регионов РФ). Что же касается оптимального угла наклона модулей относительно горизонта, то он зависит от географических широт. В более северных (высоких) областях он увеличивается из-за малого подъема солнца.

    Определить этот угол можно при помощи довольно простой методики (сами модули должны быть ориентированы на юг, разумеется).

    Для получения максимума энергии летом панели располагаются под углом, на 15° меньшим географической широты точки. Зимой угол наклона, напротив, должен превышать широту на 15°.

    А для получения общей максимальной энерговыработки в течение всего календарного года угол должен равняться географической широте.

    После определения угла наклона в климатической таблице инсоляции нужно найти ее значение для заданного региона, угла наклона поверхности и времени года. Таблицы инсоляции по региона РФ относятся к справочной информации, с ними можно ознакомиться на сайтах метеослужб. Нужная цифра измеряется в кВт*ч/м2.

    Так, для широт Краснодара и угла в 30°, в июле инсоляция составляет 180 кВт*ч/м2. Иными словами, приход солнечной энергии будет равен 180 пикочасам. Пикочас – это условный временной интервал, в течение которого солнечная радиация держится на уровне 1000 Вт/м2.

    Именно данная степень освещенности и применяется при паспортизации гелиобатарей. Получается, что в Краснодаре за июльский день наблюдается 6 пикочасов. Конечно, солнце светит не 6 часов, а гораздо больше, но интенсивность его при этом ниже.

    Кроме того, нужно учитывать не только инсоляцию, но и повышенный нагрев модуля на прямом солнце, что ощутимо снижает его эффективность.

    Упрощенная формула для расчета мощности гелиомассива выглядит так: PƩ=(1000*W)/(k*E) PƩ – общая энерговыработка гелиомассива; W – нужное количество энергии; k – коэффициент сезонный (для зимы – 0,7; для лета – 0,55);

    E – величина инсоляции.

    Сезонный коэффициент необходим для учета всех потерь на зарядку АКБ (они составляют 20%), исключая потери в соединительных кабелях. Сечения кабелей нужно подбирать из расчета не более 2-3% потерь.

    Полученную по формуле мощность массива можно разделить на производительность одного модуля и определить требуемое число гелиомодулей. Однако надо помнить, что при выборе напряжения и мощности модулей нужно учесть ряд отдельных нюансов, которые должны согласовываться с параметрами зарядного контроллера.

    Стоит также упомянуть, что добавление системы отслеживания положения солнца дает прибавку к производительности в 20% только при азимутальном слежении. Еще 10% добавляются при отслеживании высоты солнца.

    Иными словами, общий выигрыш составляет порядка 30%, но, как правило, целесообразнее приобрести несколько дополнительных солнечных батарей, чем тратиться на такую установку.

    Которая, к тому же, потребует периодического обслуживания.

    Для большинства круглогодичных систем или систем, работающих в основном зимой, выгодно использовать еще один энергоисточник, например, ветро- или топливный генератор. Такие гибридные системы более эффективны и рациональны в использовании.

    Источник: http://solarb.ru/kalkulyator-rascheta-fotoelektricheskoi-sistemy

    Теория

    Инверторы. Принцип действия.

    Инвертором называется прибор, схема, или система, которая создает переменное напряжение при подключении источника постоянного напряжения. Существует другой способ определения: инверсия – функция обратная выпрямлению.

    Большинство потребителей даже и не задумываются какова форма выходного напряжения инвертора или ББП. А ведь большинство представленных на рынке приборов выдают не «чистый синус», а так называемый «модифицированный синус»

    Принцип выработки электроэнергии с помощью ветрогенераторов

    Таким образом, за счет вращения ветроколеса и посаженных с ним на одну ось постоянных магнитов внутри медной обмотки, мы получаем на контактах генератора разность потенциалов, т.е. электрическое напряжение U [B], которое дает нам электрическую мощность Nэл. [Вт], а с течением времени и электрическую энергию Ээл. [Вт×ч]:

    Автономное электроснабжение дома, дачи

    Если вы внимательно ознакомитесь с недостатками централизованных сетей для электроснабжения частных домов, то поймёте, почему генерация своей собственной электроэнергии станет для Вас наиболее разумным решением в большинстве случаев.

    Солнечные батареи своими руками ?

    Я построил ветрогенератор для электрообеспечения этого участка. Он работает хорошо, когда ветер дует. К сожалению, мне нужно больше энергии. И эта энергия должна быть более стабильна. А то такое ощущение, что у меня на участке ветер дует всегда, но только не тогда когда мне нужна энергия.

    Персональные зеленые электростанции

    Наступает эпоха извлечения энергии из чистых возобновляемых источников. Нам надо построить экологически чистое будущее, и времени для этого осталось не так уж много. Выход есть – альтернативные источники энергии и применение технологии Smart Grid (Интеллектуальные Сети).

    Электрический аккумулятор. Строение и принцип работы.

    Важной составной частью электрической станции, работающей от солнечной энергии, является аккумуляторная батарея. Именно в ней запасается выработанная в светлое время суток электрическая энергия, которая может оказаться востребованной после захода Солнца.

    Солнечные коллекторы. Какие они бывают?

    На сегодняшний день солнечная энергетика развита достаточно обширно, это  дает возможность устанавливать солнечные панели различных комплектаций и  размеров. Этот аспект позволяет солнечным коллекторам обеспечивать  хозяйственные нужды человека, такие как  отопление и снабжение горячей  водой.

    Существует несколько видов ветряков. Более того существует несколько их классификаций. Каждый из видов имеет много преимуществ.

    Не нужно быть великим мыслителем, чтобы понять, что энергетическое будущее земли именно за возобновляемыми источниками энергии и, в частности, за солнечной энергетикой. Ведь всё гениальное – просто.

    Энергия ветра на пользу людям

    В средней полосе России ветряк может стать хорошим подспорьем, если у вас отсутствует электричество и его не будет в дальнейшем. Вырабатывая в среднем 150 кВт/ч в месяц он поможет хорошо сэкономить топливо и ресурс теплового генератора. Ресурс же самого ветрогенератора измеряется десятилетиями. При этом ветряк требует минимального обслуживания.

    Солнце лишь одна из миллиардов звезд, но оно источник энергии для всего живого и для самой Земли. Ископаемое топливо расходуется такими темпами, что его запасы истощатся где-то во второй половине следующего столетия

    Принцип преобразования солнечной энергии в электричество

    Гипотеза Планка объяснила явление фотоэффекта, открытого в 1887 г. немецким ученым Генрихом Герцем и изученного экспериментально русским ученым Александром Григорьевичем Столетовым, который путем обобщения полученных результатов установил следующие три закона фотоэффекта….

    Солнечная энергетика является одним из крупнейших сегментов альтернативной энергетики и отрасли использования возобновляемых источников энергии (ВИЭ).

    Сегодня принято различать три основных технологии солнечной энергетики: энергия солнца может использоваться для генерации электроэнергии (фотовольтаика, photovoltaics, PV), для получения концентрированной тепловой энергии с целью последующей электрогенерации (concentrated solar power, CSP) или для непосредственного нагрева теплоносителя, наиболее часто, водного (solar thermal).

    Солнечная электростанция своими руками. Подбор компонентов.

    Как расчитать параметры компонентов солнечной электростанции? Сколько солнечных батарей, какие аккумуляторы, для чего нужен контроллер заряда, как установить солнечные модули, инвертор и с чем его едят – все Вы узнаете на этой странице…

    Источник: http://www.solarroof.ru/theory/28/105/

    Понравилась статья? Поделиться с друзьями:
    Дизайн Дома
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

    Adblock
    detector