Методика определения эффективности вентиляции помещений

Методика определения эффективности вентиляции помещений

Для того чтобы чувствовать себя комфортно и удобно в своем доме и наслаждаться чистым воздухом, необходима качественная система вентилирования и кондиционирования. Она возможна только в том случае, если в системе обеспечен нормальный поток кислорода.

Схема сети вентиляционных воздуховодов: 1 — вентилятор; 2 — диффузор; 3 — конфузор; 4 — крестовина; 5 — тройник; 6 — отвод; 7 — внезапное расширение; 8 — клапаны-заслонки; 9 — колено; 10 — внезапное сужение; 11 — регулируемые жалюзийные решётки; 12 — воздухоприёмная насадка.

Воздух, который перемещается по вентиляционным каналам, при расчетах принимается как несжимаемая жидкость. Такое допущение возможно, так как в воздуховодах не создается большого давления.

Давление создается при трении воздушной массы о поверхность каналов, а также при возникновении местных сопротивлений, к которым относится его повышение на поворотах и изгибах труб, при делении или соединении потоков, при изменении диаметра вентиляционного канала или в местах установки регулирующих устройств.

Аэродинамический расчет включает в себя определение размеров сечений всех участков вентиляционной сети, которые обеспечивают перемещение воздушной массы. Кроме того, необходимо определить нагнетание, возникающее при движении воздушных масс.

Схема создания естественной вентиляции.

Как показывает практика, иногда при расчетах некоторые из перечисленных величин уже известны. Встречаются следующие ситуации:

  1. Известно давление, необходимо вычислить поперечное сечение труб, чтобы обеспечить перемещение необходимого количества кислорода. Данное условие характерно для систем естественной вентиляции, когда нельзя изменить располагаемый напор.
  2. Известно поперечное сечение каналов в сети, нужно вычислить давление, необходимое для перемещения необходимого количества газа. Характерно для тех вентиляционных систем, сечения которых обусловлены архитектурными или техническими особенностями.
  3. Ни одна из переменных неизвестна, поэтому требуется вычислить и поперечное сечение, и напор в вентиляционной системе. Данная ситуация является самой распространенной при домостроительстве.

Рассмотрим общую методику аэродинамического расчета при неизвестном давлении и сечениях. Аэродинамический расчет проводится после того, как определяется необходимое количество воздушной массы, которое должно проходить по сети кондиционирования, и проектируется примерное расположение воздухопроводов системы.

Схема вентиляции смешанного типа.

Для проведения расчета вычерчивают аксонометрическую схему, где указаны перечисление и размеры всех элементов системы. По плану системы вентиляции определяется общая протяженность воздухопроводов.

Далее систему воздуховодов разбивают на однородные участки, на которых по отдельности определяют расход воздуха. Аэродинамический расчет производится для каждого однородного участка сети, где существуют постоянный расход и скорость воздушной массы.

Все вычисленные данные наносятся на аксонометрическую схему, после чего выбирается главная магистраль.

Источник: https://1poteply.ru/sistemy/vozduxovodov-aerodinamicheskih.html

Показатели эффективности вентиляции помещений

Санитарные показатели эффективности вентиляции воздуха жилых и общественных помещений: запах (или его отсутствие), содержание двуокиси углерода, температура, влажность и скорость движения воздуха, его микробная обсемененность. В тех случаях, когда в жилые помещения или общественные здания поступают какие-либо химические вещества, определяют их содержание в воздухе.

6. Основные гигиенические требования, предъявляемые к строительным и отделочным материалам.

Основное гигиеническое требование, предъявляемое к строительным материалам: строительные материалы должны обладать плохой теплопроводностью, обеспечивая защиту помещений от охлаждения и перегревания. Существенное значение имеет малая звукопроводность строительных материалов в ограждающих конструкциях.

Роза ветров, определение понятия. Значение господствующего направления ветра в санитарной практике.

Роза ветров — графическое изображение частоты (повторяемости) ветров по географии. Значение: определение господствующего направления на данной территории. Учитывается при планировке города и строительстве промышленных зданий.

Значение озеленения для формирования условий жизни в городе, норма озеленения в селитебной зоне.

Влияние зеленых насажденийна формирование микроклимата объясняется изменением скорости и направления ветра, повышением влажности и снижением напряжения солнечной радиации среди древесных и кустарниковых насаждений. Озеленение территории жилой застройки должно быть не менее 24%, промышленных предприятий – 30%, участков школ и детских дошкольных учреждений – 45-55%, учреждений здравоохранения – не менее 60%.

В городах на 1 жителя должно быть 100-150 м2 зеленых насаждений. Кроме того, необходим значительный резерв зелени для компенсации очистительных процессов на предприятиях от вредных газов и аэрозолей, выбрасываемых ими. При этом углерода диоксид, выдыхаемый людьми, составляет лишь 10% его общего поступления в атмосферу.

Допустимые уровни шума в жилых помещениях, гигиеническое значение.

Днем — 35 дБА

Ночью — 30 дБА

гигиеническое значение: шум непосредственно влияет на организм человека, нарушая тем самым деятельность тех или иных органов, например, влияет на орган слуха, повышает АД, появляется нарушение сна, дестабилизация нервной системы.

Оптимальный микроклимат, определение понятия.

Оптимальный – микроклимат, при котором человек соответствующего возраста, состояния здоровья и т.д. находится в состоянии теплового комфорта.

Механизмы осуществления химической терморегуляции.

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т. е. усиления или ослабления интенсивности обмена веществ в клетках организма.

Физиологические механизмы, позволяющие изменять количество тепла, отдаваемого телом человека при различных микроклиматических условиях.

  1. Потоотделение;
  2. Дрожание мышц;
  3. Похолоднение дистальных отделов организма;

Основные пути отдачи тепла организмом.

Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.

Конвекция. Определение понятия.

Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи.

При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция).

При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).

Оптимальные показатели микроклимата в жилых помещениях

Наименование помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
Холодный период года
Жилая комната 18-24 0,2
Теплый период года
Жилая Комната   20-28 0,3

Источник: https://cyberpedia.su/7x1b26.html

способ определения эффективности работы вытяжной вентиляции в различных метеорологических условиях и устройство для его осуществления

Изобретение относится к области машиностроения, а именно к моделированию аэродинамических процессов естественной вентиляции.

В способе определения эффективности работы вытяжной вентиляции в различных метеорологических условиях, заключающемся в том, что эффективность работы вытяжной вентиляции определяют с учетом величины скорости движения воздуха внутри вытяжной трубы, согласно изобретению для определения эффективности работы вентиляции дополнительно измеряют скорость движения воздуха снаружи вентиляционной трубы крыльчатым анемометром, температуру воздуха снаружи и внутри камеры – термометрами. Это дает возможность определить эффективность работы вытяжной вентиляции при различных скоростях движения воздуха снаружи вентиляционной трубы и осуществить выбор дефлекторов в зависимости от метеорологических условий и назначения помещения. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, а именно к моделированию аэродинамических процессов естественной вентиляции и выбору дефлекторов в зависимости от метеорологических условий и назначения помещения.

Известно несколько способов определения эффективности работы вытяжной вентиляции.

В одном из них (Харитонов В.П. Естественная вентиляция с побуждением // АВОК, 2006. – № 3. – С.46-54) рассчитывают дополнительное ветровое давление (разрежение) DPv, создаваемое дефлектором при наличии ветра:

где С – коэффициент разрежения для дефлектора, равный 0,75 при отклонениях направления ветра от горизонтальной плоскости не более 30° и 0,6 при отклонениях до 60°;

Vв. – скорость ветра, м/с;

в.н. – плотность наружного воздуха, кг/м 3.

Для расчета эффективности работы вытяжной вентиляции рассчитывается скорость движения воздуха в вытяжном трубе:

с – коэффициент сопротивления воздуха в вытяжной трубе;

в.н – плотность наружного воздуха

Эффективность работы вытяжной вентиляции (м3/ч) определяется по формуле:

где v – скорость движения воздуха в вытяжной трубе (м/с),

S – площадь вытяжной трубы (м2).

Недостатком этого способа является невозможность определения эффективности работы вытяжной вентиляции с учетом величины разрежения, создаваемого за счет разницы температур воздуха снаружи и внутри помещения.

Другой способ (Шкрабак B.C., Луковников А.В., Тургиев А.К. Безопасность жизнедеятельности в сельскохозяйственном производстве. – М.: «КолосС», 2002. – С.420-421) учитывает перепад давления Нт за счет разности температур и, соответственно, масс столбов наружного (более тяжелого) и внутреннего (более легкого) воздуха:

где h – высота между серединами приточных и вытяжных проемов (м),н,в – плотности наружного и внутреннего воздуха (кг/м3).

Плотности наружного и внутреннего воздуха рассчитываются по формуле:

где t – температура воздуха

Для расчета эффективности работы вытяжной вентиляции рассчитывается скорость движения воздуха в вытяжной трубе:

где Нт – перепад давления, обусловленный разницей температур, Па;

с – коэффициент сопротивления воздуха в вытяжной трубе;

в.н – плотность наружного воздуха.

Эффективность работы вытяжной вентиляции (м3/ч) определяется по формуле 3.

Недостатком этого способа является невозможность определения эффективности работы вытяжной вентиляции с учетом скорости движения воздуха снаружи вентиляционной трубы, а также достаточно сложный расчет.

Задачей изобретения является упрощение способа определения эффективности работы вытяжной вентиляции при различных метеорологических условиях.

Поставленная задача достигается тем, что способ определения эффективности работы вытяжной вентиляции в различных метеорологических условиях, заключающийся в том, что эффективность работы вытяжной вентиляции определяют с учетом величины скорости движения воздуха внутри вытяжной трубы, согласно изобретению для определения эффективности работы вентиляции дополнительно измеряют скорость движения воздуха снаружи вентиляционной трубы, температуру воздуха снаружи и внутри камеры.

Для этого предлагается устройство для определения эффективности работы вытяжной вентиляции, содержащее вытяжную трубу, дефлектор и вентилятор, вытяжная труба которого согласно изобретению снабжена чувствительным элементом, предназначенным для измерения скорости движения воздуха внутри ее, закреплена на камере, внутри которой расположен нагревательный элемент, кроме того, устройство снабжено пультом управления, крыльчатым анемометром для измерения скорости движения воздуха снаружи вентиляционной трубы, двумя термометрами, один из которых расположен внутри камеры, а другой снаружи.

Сущностьность предлагаемого изобретения поясняется чертежом, где представлено устройство для определения эффективности работы вытяжной вентиляции в различных метеорологических условиях.

Для реализации этого способа предлагается устройство, обеспечивающее различные скорости движения воздуха и различный перепад температур между внутренним и наружным воздухом и их измерение.

На чертеже представлено устройство для определения эффективности работы вытяжной вентиляции в различных метеорологических условиях.

Устройство состоит из камеры 1, выполненной из многослойной фанеры, установленной на подставке 2 из металлического уголка, снабженной отверстием 3 для притока воздуха. Внутри камеры 1 расположен нагревательный элемент 4, снабженный регулируемым питанием, позволяющим обеспечить нагрев воздуха внутри камеры до 65°C и разницу температур внутреннего и наружного воздуха от 0 до 40°C.

На подставке 2 установлен вентилятор 5 с регулируемым питанием, обеспечивающим скорость воздушного потока от 0,5 до 5 м/с. На камере 1 установлена вытяжная труба 6, на которой установлен дефлектор 7.

Регулировка питания устройства и контроля метеорологических показателей производится с помощью пульта управления 8, снабженного тумблерами включения-выключения питания 9, индикаторами питания 10, реостатами 11 для изменения напряжения питания нагревательного элемента 4 и вентилятора 5, метеометром 12 марки МЭС-200 для фиксации скорости движения воздуха в вытяжной трубе 6, в которой установлен чувствительный элемент 13. На вентиляционную трубу 6 установлен крыльчатый анемометр 14, снаружи камеры 1 установлен термометр 15, а внутри ее установлен термометр 16.

Читайте также:  Спальня для принцев и принцесс: итальянская мебель для малыша

Предлагаемый способ и устройство для определения эффективности работы вытяжной вентиляции в различных метеорологических условиях работают следующим образом.

Нагревательный элемент 4 обеспечивает увеличение температуры воздуха внутри камеры 1.

За счет разницы температур воздуха внутри камеры 1 и снаружи в вытяжной трубе 6 создается тепловое разрежение, и воздух начинает поступать в камеру через приточное отверстие 3 и выводится из камеры через вытяжную трубу 6 с определенной скоростью.

Вентилятор 5 создает воздушный поток, который обеспечивает ветровое разрежение в дефлекторе 7 и увеличение скорости движения воздуха в вытяжной трубе 6 на величину, зависящую от скорости воздушного потока.

Скорость движения воздуха в вытяжной трубе 6 фиксируется чувствительным элементом 13 и отображается на дисплее метеометра 12. Скорость движения воздуха снаружи вытяжной трубы 6 измеряется крыльчатым анемометром 14, температура воздуха снаружи камеры 1 измеряется термометром 15, а внутри нее – термометром 16. Эффективность работы дефлектора и вытяжной вентиляции в целом (м3 /ч) определяется по формуле:

W=3600vS,

где v – скорость движения воздуха в вытяжной трубе (м/с),

S – площадь сечения вытяжной трубы (м2 ).

Например, при разнице температур внутреннего и наружного воздуха, составляющей 10°C, которая наблюдается в овощехранилищах и в помещениях животноводческого назначения в весенний и осенний периоды, и скорости наружного воздуха 2 м/с, скорость движения воздуха в вытяжной трубе при использовании типового дефлектора ЦАГИ составляет 0,9 м/с. Эффективность работы вытяжной вентиляции в данном случае составит:

W=3600*0,9*0,008=25,9 (м3/ч),

где S – площадь сечения вытяжной трубы, равна 0,008 м2.

При тех же метеорологических условиях, но с использованием дефлектора усовершенствованной конструкции (патент РФ № 2365829, МПК F24F 7/02, опубл. 27.08.2009, бюл. № 24) скорость движения воздуха в вытяжной трубе составит 1,1 м/с. Эффективность работы вытяжной вентиляции в этом случае составит:

W=3600*1,1*0,008=31,7 (м3 /ч)

Таким образом, эффективность работы дефлектора по патенту РФ № 2365829 выше, так как он обеспечивает более высокий воздухообмен по сравнению с дефлектором ЦАГИ.

Предлагаемое устройство дает возможность определить эффективность работы вытяжной вентиляции в различных метеорологических условиях, при различных скоростях движения воздуха внутри вентиляционной трубы за счет регулировки питания нагревательного элемента 4 и снаружи с помощью вентилятора 5. На основании полученных данных выбирают дефлектор в зависимости от метеорологических условий и назначения помещения.

Таким образом, предлагаемый способ и устройство позволяют определять эффективность работы вытяжной вентиляции в различных метеорологических условиях.

Формула изобретения

1.

Способ определения эффективности работы вытяжной вентиляции в различных метеорологических условиях, заключающийся в том, что эффективность работы вытяжной вентиляции определяют с учетом величины скорости движения воздуха внутри вытяжной трубы, отличающийся тем, что для определения эффективности работы вентиляции дополнительно измеряют скорость движения воздуха снаружи вентиляционной трубы, температуру воздуха снаружи и внутри камеры.

2.

Устройство для определения эффективности работы вытяжной вентиляции, содержащее вытяжную трубу, дефлектор и вентилятор, отличающееся тем, что вытяжная труба с чувствительным элементом, предназначенным для измерения скорости движения воздуха внутри нее, закреплена на камере, внутри которой расположен нагревательный элемент, кроме того, устройство снабжено пультом управления, крыльчатым анемометром для измерения скорости движения воздуха снаружи вентиляционной трубы, двумя термометрами, один из которых расположен внутри камеры, а другой снаружи.

Источник: http://www.freepatent.ru/patents/2496961

Проверка эффективности работы системы вентиляции

Любые сооружения, в которых запроектирована система вентиляции, необходимо регулярно инспектировать, проверяя их работоспособность.

Это важно ввиду того, что самочувствие и здоровье людей напрямую зависит от качества и чистоты воздуха, и поддерживать нужный уровень пожаробезопасности возможно только при незагрязненных вентканалах.

Поэтому проверки проводить нужно не только для получения разрешений и прохождения комиссий, но и для собственной безопасности.

Одно из условий грамотной эксплуатации вентиляционных систем — постоянный производственный контроль, или оценка их эффективности. Его проводят с целью выявления потерь давления, неучтенного расхода воздуха; определения, насколько хорошо обслуживающие комплекс работники справляются со своими обязанностями.

При введении в эксплуатацию вентсистем организуют пусконаладочные испытания, проверяя их полноценность и соответствие параметрам из нормативных документов. Но любой комплекс меняется со временем, теряет работоспособность, приходит в негодность.

Поэтому периодическая оценка эффективности работы вентиляции — важная часть ее использования.

Почему необходимо проверять эффективность вентиляции?

Ключевая цель, с которой проводят замеры вентиляции на эффективность — обнаружение неисправностей и проблем, влекущих за собой опасность для находящихся в помещениях людей и всего здания в целом. Также проверка необходима, чтобы:

  • оценить, правильно ли произведены расчеты на стадии проектирования вентиляционной системы;
  • узнать, достаточно ли хорошо существующие установки справляются с нагрузками, как поддерживают тягу;
  • изыскать возможности для энергосбережения, снижения расходов на эксплуатацию систем;
  • подтвердить соответствие нормам и требованиям санитарно-эпидемиологических, технико-надзорных, пожарных инстанций;
  • пересчитать параметры системы после ее модификации, реконструкции, ремонта;
  • успешно пройти паспортизацию.

Последний пункт актуален для систем, вводимых в эксплуатацию или меняющихся на фундаментальном уровне. Паспорт — это основной юридический документ, в котором фиксируют все результаты испытаний, параметры исследованной среды (температуру, уровень влажности, химический состав воздуха и его подвижность).

Он дает право на официальное использование конкретного объекта, подтверждает, что был выполнен весь необходимый для него комплекс работ по проектированию, созданию, наладке и проверке.

Паспортизация нужна для регистрации приобретенного вентоборудования (особенно это актуально для общественных и производственных зданий), подтверждения того, что требования санитарных служб выполняются.

Чтобы в помещениях не накапливалось избыточное количество углекислого газа, люди сохраняли работоспособность, не чувствовали сонливости, недомогания, головокружения, вентканалы должны быть чистыми и неперекрытыми.

Полноценный воздухообмен особенно важен там, где есть условия для образования повышенной влажности (кухни, душевые, сауны и бассейны) — в благоприятной для них среде быстро размножаются плесень, бактерии и грибок.

Для промышленно-производственных, складских и лабораторных комплексов оценка эффективности вентиляционных систем тоже необходима.

Если из помещений не будут удаляться взрывоопасные, летучие, ядовитые и быстровоспламеняющиеся вещества, это приведет к драматическим последствиям. Самостоятельно и оперативно найти поломки очень сложно, визуальных наблюдений зачастую недостаточно.

Оборудование может работать, но не вытягивать весь загрязненный воздух до конца, плохо подавать свежий извне, что негативно сказывается на микроклимате в помещениях.

Оценить ущерб могут только профессиональные сотрудники организаций, имеющих полномочия проводить официальную проверку. Их работа, а также документация, которую они предоставляют заказчику по результатам, четко регламентированы в профильных правовых нормах.

Правовая база для определения эффективности вентсистем

Экспертизы должны быть проведены в соответствии с законодательством страны. При работе нужно учитывать распоряжения исполнительных и контролирующих органов — главного государственного врача, Роспотребнадзора, заменившего традиционные санстанции и так далее. Среди основных актов, определяющих характер и суть оценки эффективности вентсистем, нужно назвать:

  • Федеральный Закон №52, регламентирующий вопросы санитарно-эпидемиологического благополучия граждан;

Источник: http://oooExpert68.ru/proverka-effektivnosti-raboty-sistemy-ventilyacii/

Проверка эффективности систем вентиляции

Компания «Технологии Строительного Контроля» предоставляет услуги по проверке эффективности систем вентиляции на объектах:

  • производственные помещения и комплексы;
  • медицинские организации и учреждения;
  • рентгеновские кабинеты;
  • стоматологические клиники;
  • общественные и административные здания;
  • кафе, рестораны, организации общественного питания;
  • торговые центры и магазины;
  • многоквартирные дома с системами естественной и механической вентиляции;
  • индивидуальные дома и коттеджи.

По результатам проверки оформляем и заносим данные в паспорта системы вентиляции, предоставляем протоколы аккредитованной лаборатории, выдаем акты, справки и технические отчеты о проверке.

Что такое проверка эффективности системы вентиляции?

Проверка эффективности системы вентиляции – это проверка соответствия воздухообмена в помещениях требованиям, заложенным в проекте или требованиям санитарных и гигиенических норм.

Зачем нужна проверка эффективности?

Правильно спроектированную, смонтированную и хорошо налаженную систему вентиляции не видно и не слышно. Но, увы, такое встречается не часто.

А ведь смысл вентиляции заключается в обеспечении необходимого для работы, жизни и здоровья человека качества воздуха! Поэтому нарушение в работе вентсистем в первую очередь действуют на здоровье и самочувствие людей.

Косвенными признаками неудовлетворительной работы вентиляции является плохое самочувствие, сонливость, уменьшение производительности труда. Для того чтобы избежать негативных последствий из-за нарушений в работе вентиляции и нужна проверка ее эффективности.

Единственным способом проверки эффективности вентиляции является инструментальный контроль. Профессионально точным названием этой работы будет «Аэродинамические испытания систем вентиляции».

С помощью приборов по установленной методике специалисты определяют фактические параметры работы вентиляции и сравнивают их с проектными или нормативными, если для данного объекта есть установленные нормы.

Правильно работающая вентиляция нужна тому, кто эксплуатирует объект. Если вентиляция неэффективна, то её лучше выключить, чтобы сэкономить тепловую и электрическую энергию.

Периодичность проверки

Периодичность проверки эффективности вентиляции для большинства объектов составляет один раз в год для вытяжной и местной приточной, раз в три года для общеобменной приточной и воздушных завес. Эта периодичность устанавливается в соответствующих санитарных нормативах, которые разработаны для многих типов объектов, например:

Если отраслевого норматива нет, обращаются к старым методически указаниям для Роспотребнадзора:

Методические указания № 4425-87 предписывают:

в помещениях с выделениями вредных веществ проводить проверки не реже одного раза в месяц;

для систем местной вытяжной и приточных систем один раз в год;

для общеобменных и естественных систем один раз в три года.

Такая периодичность может быть достаточной для систем, прошедших качественную пусконаладку. При плохой пусконаладке или её отсутствии, что встречается очень часто, системы сразу работают неэффективно.

Качество монтажа тоже имеет большое значение.

Неправильные технологические решения, неоправданное применение алюминиевого скотча и гибких воздуховодов, плохой крепёж приводят к тому, что в течении первого года эксплуатации сети очень быстро теряют герметичность, и когда проводится первая проверка после года эксплуатации, выявляются дефекты, в результате которых воздухообмены меньше нормативных.

Учитывая это можно считать, что первую проверку эффективности после ввода в эксплуатацию лучше провести как можно раньше, на первом же году эксплуатации. Периодичность последующих проверок можно увеличить, современные приточные установки лучше проверять чаще – ежегодно. Общеобменные вытяжки обычно работают стабильно, их можно проверять и реже – одни раз в три года.

Завесы и крышные вентиляторы действительно не нуждаются в частой проверке, они или работают, или нет, весь срок эксплуатации, так что их можно проверять реже, раз в пять лет.

Нормативы

Читайте также:  Отличия акрилового и силиконового герметика

Главным нормативом при проверке вентиляции является проект, утверждённый органами Роспотребнадзора. Во всех помещениях должны обеспечиваться проектные воздухообмены и балансы. Нормативы часто привязаны к объёму помещений, и оформляются в виде кратности воздухообмена.

Если проект отсутствует, то можно пользоваться отраслевыми санитарными нормативами, СанПиН. Если отраслевого санитарного норматива нет, пользуются строительными нормами, СНиП и СП. Если нет и их, то можно ссылаться на рекомендации по проектированию соответствующих объектов.

Состав работ

Состав работ определяется потребностями заказчика. Например, измерения вибрации позволяют понять, что двигатель вентилятора сильно изношен и, возможно, скоро выйдет из строя.

Это важная информация и для некоторых вентсистем производственного и медицинского назначения она критична, так как работа без вентиляции невозможна. Поэтому двигатель или вентагрегат меняют до их фактического выхода из строя.

Помимо стандартной вибрационной диагностики, наша лаборатория применяем и тепловизионную диагностику. Проверка тепловизором вентиляционных агрегатов сразу показывает перегреты ли двигатель или узлы подшипников.

Если жалоб на шум и вибрацию нет, а простой отдельной системы вентиляции на одну-две недели можно допустить, то вибрацию можно не измерять.

Техническое задание

Зная свои реальные потребности, заказчик составляет техническое задание на проверку вентиляции, по которому можно определить состав и объём работ для конкретного объекта.

Иногда у заказчика нет технических специалистов, тогда он поручает разработку техзадания исполнителю работ. В этом случае перед составлением задания необходимо предварительное обследование состояния вентиляции объекта. Бывает так, что системы не эксплуатировались с момента строительства и частично демонтированы, но продолжают числиться действующими.

Если задание делается без предварительного обследование, то скорее всего объём работ и цена будет завышены.

Программа работ

На основании технического задания и предоставленной заказчиком документации (проект, паспорта, технические отчёты) исполнитель разрабатывает и согласовывает программу работ.

Специфика проверки эффективности

Для проверки эффективности вентиляции характерно то, что работы выполняются на действующем объекте. Особенности работы зависят от типа объекта.

Для медицинских объектов это означает согласование графиков с графиком использования помещений. Например, в операционных работы проводятся перед дезинфекцией.

В торговых комплексах работы в торговом зале не проводятся в часы пиковой посещаемости. Для некоторых видов объектов работа возможна только в ночное время.

На взывопожароопасных объектах есть ограничения по допускаемым приборам.

Методика

Методика замеров является общеотраслевой, ГОСТ 12.3.018-79. Крупные организации на его основе часто разрабатывают и утверждают свои методики, с учётом современного приборного парка или иностранных методик.

Исполнители

Наша Вентиляционная лаборатория аккредитована на все виды измерений, связанные с проверкой эффективности вентиляции.

Аккредитация означает, что специалисты, приборный парк, методическая и нормативная база, система внутреннего контроля качества нашей лаборатории проверены независимой государственной службой – Федеральной Службой по Аккредитоции, и признаны соответствующими требованиям.

В нормативах, связанных с медициной, а также в некоторых отраслевых нормах, например СТО РЖД 15.003-2014, наличие аккредитация у лаборатории является обязательным требованием.

Результаты

Результаты проверок вносятся в паспорта вентустановок с указанием даты измерений, выдаются протоколы, обычно в двух экземплярах, один прикладывается к паспорту. Там, где нормы выражены в кратностях, дополнительно предоставляется таблица кратностей воздухообмена.

Иногда заказчик хочет получить более полную информацию, в виде технического отчёта, воздушных балансов и ведомости дефектов. Это требование должно быть согласована до начала работ.

Если требуется подробный технический отчёт с ведомостью дефектов и мероприятиями по восстановлению или улучшению параметров работы, в звено наладчиков должны входить не только замерщики, но и опытный инженер-вентиляционщик.

Задайте нам вопрос,Оформите онлайн-заявку

или позвоните СПб: +7 (812) 438-56-48 Мск: +7 (495) 120-13-48

Источник: http://tbcontrol.ru/ventilyatsionnaya-laboratoriya/proverka-effektivnosti-sistem-ventilyatsii/

Оценка эффективности общеобменной вентиляции

Приоритетным мероприятием по обеспечению благоприятных метеорологических условий в помещении является эффективная система вентиляции.

Оценка эффективности действующей вентиляционной системы сводится к сравнению воздухообмена, который она создает, с нормативным воздухообменом.

Воздухообмен в помещении находят по кратности (К, ч-1) – величине, показывающей, сколько раз в течение часа воздух полностью сменяется чистым. Вентиляция считается эффективной, если кратность действующей вентиляции (Кд) больше или равна нормативной (Кн ).

Значение нормативной кратности находится расчетным способом с учетом специфики технологического процесса и вида вредных факторов, ухудшающих качество воздуха в помещении (газы, пары, аэрозоли токсичных веществ, тепло- или влаго – избытки и т.п.). Нормативная кратность воздухообмена находится по формуле:

Кн = Lуд /Vсв, (2.10)

где Lуд- объем воздуха, подлежащий удалению из помещения в течение часа по санитарно-гигиеническим требованиям, м3/ ч;

Vсв – свободный объем помещения, равный 80% от геометрического объема –

Vсв = 0,8Vгг, м3.

При поступлении в воздух помещения из оборудования газов, паров или пыли объем удаляемого воздуха находят по формуле:

Lуд= Gв/(С1- С2), (2.11)

где Gв- количество вредных веществ (газов, паров или пыли), поступающих в воздух помещения в течение часа, мг/ч. Это количество можно найти по формулам, приведенным в литературе [9] .

С1; С2- концентрации вредных веществ соответственно в удаляемом и приточном воздухе, мг/м3.

При определении нормативного воздухообмена С1=ПДКрз, С2=0,3 ПДКрз.

При поступлении в воздух нескольких видов вредных веществ однонаправленного действия (эффект суммации) находят объем воздуха, необходимый для удаления каждого вещества, и их складывают. Для веществ, не обладающих однонаправленным действием, за нормативный принимают максимальный из рассчитанных объемов.

При поступлении в воздух помещения водяных паров, объем воздуха, подлежащий удалению, рассчитывают по формуле:

Lуд = Gвод /(d1 – d2), (2.12)

где Gвод- количество водяных паров, поступающих в воздух помещения из технологического оборудования в течение часа, г /ч;

d1, d2 – содержание водяных паров (абсолютная влажность воздуха) соответственно в удаляемом и приточном воздухе, г/м3.

Абсолютная влажность воздуха (А, г/м3 ) по численному значению мало отличается от парциального давления паров воды при тех же условиях, измеренного в миллиметрах ртутного столба (Р, мм.рт.ст.).

Поэтому для определения влагосодержания в воздухе в нужно по температуре воздуха найти парциальное давление насыщенных паров (см. прил., табл.2.

7) и умножить эту величину на относительную влажность воздуха в долях единицы.

При поступлении в помещение теплоизбытков (Q кДж/ч) от нагретого оборудования и изделий нормативный объем воздуха для их удаления рассчитывают по формуле:

Lуд=Q/ [с×rср×( t1- t2)], (2.13)

где с- теплоемкость воздуха, с=1,2 кДж/(кг×град);

rср- плотность воздуха при средней температуре воздуха (tср), кг/м3;

t1, t2 – температура соответственно удаляемого и приточного воздуха, оС.

tср=(tрз+t1)/2, (2.14)

где tрз- температура воздуха в рабочей зоне, за величину которой принимается верхнее значение допустимой температуры для работ данной категории тяжести для теплого периода года ( см. прил., табл.2.3).

t1=tрз+Dtн×(H-2), (2.15)

где Dtн- температурный градиент, учитывающий повышение температуры по высоте помещения, Dtн=0,5-1,5 оС/м;

H – высота помещения, м.

Плотность воздуха (rt) при температуре (t) более 0оС можно рассчитать по формуле:

rt=1,29×[273/(273+t)]. (2.16)

Если в помещении отсутствует технологическое оборудование-источник поступления токсичных веществ, пыли, тепла или влаги, но одновременно может находиться много людей, то необходимый воздухообмен (Lуд) находят по формуле:

Lуд = Lн × N, (2.17)

где Lн –удельный объем воздуха на одного человека по санитарным требованиям, м3/ чел×ч: при наличии естественного проветривания для производственных помещений – 30, общественных и административных – 40; без естественного проветривания для производственных, общественных и административных – 60.

N-максимальное количество людей, которое может одновременно присутствовать в данном помещении, чел.

Определение эффективности естественной вентиляции – аэрации

Удаление теплоизбытков от технологического оборудования (Q) в «горячих» помещениях [Q ³ 84 кДж/(м3×ч)] осуществляется, чаще всего, за счет организованной системы естественной вентиляции- аэрации.

Для осуществления аэрации на крыше здания размещают специальные конструкции- аэрационные фонари или дефлекторы, через которые нагретый воздух удаляется из помещения за счет теплового и ветрового напоров.

Оценка эффективности аэрации проводится путем сравнения реальной площади вытяжных отверстий в аэрационном фонаре (Sр) или диаметра дефлектора (Др) с их нормативными значениями (Sн, Дн ).

Нормативную площадь аэрационного фонаря в м2 находят по формуле:

Sн =Lуд/(3600×r×w), (2.18)

где Lуд –объем воздуха, который должен удаляться через аэрационный фонарь в течение часа по санитарным нормам, м3/ч, (см. ф-лу 2.13);

r – коэффициент, учитывающий активную площадь аэрационных фонарей и принимающий значения от 0,16 до 0,65;

w –средняя скорость движения воздуха в плоскости аэрационного фонаря, м/с.

w=(2Hу×g/r)1/2, (2.19)

где Hу –давление в верхней части помещения, обеспечивающее удаление воздуха через аэрационный фонарь, кгс/м2;

g – ускорение силы тяжести, м/с2;

r- плотность при температуре удаляемого воздуха, кг/м3.

При нулевом балансе воздуха (приток равен вытяжке):

Hу =Hт /2; и Hт=h (rп – rу), (2.20)

где Нт – тепловой напор, обеспечивающий поступление и удаление воздуха с помощью системы аэрации, кгс/м2;

h – расстояние от середины приточных до середины вытяжных отверстий, м. Для ориентировочных расчетов h можно принять равным на 1-2 м менее высоты здания;

rп; rу – плотности соответственно приточного и удаляемого воздуха, кг/м3.

Плотности воздуха с учетом температуры приточного и удаляемого воздуха рассчитывают по формуле 2.16.

В небольших производственных зданиях используют канальную аэрацию, при которой некачественный воздух удаляется через вентиляционные каналы, предусмотренные в стенах помещения.

Для усиления вытяжки из каналов на крыше здания устанавливают дефлекторы – устройства, создающие тягу как за счет теплового напора, так и за счет обдувания их ветром.

Производительность дефлектора пропорциональна его диаметру (Д, м) и может быть найдена по формуле:

Д = 0,0188(Lу /wп)1/2, (2.21)

где Lу – нормативный объем воздуха, который должен быть удален с помощью данного дефлектора, м3/ч;

wп – скорость воздуха в патрубке дефлектора, м/с. Эту скорость принимают равной 20 – 40% от средней скорости ветра для местности, где расположено помещение. Для Ивановской области средняя скорость ветра равна 3,5 м/с [10].

Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:

Источник: https://megalektsii.ru/s18847t4.html

Пошаговая методика расчета вентиляции

Проектирование вентиляции жилого, общественного или производственного здания проходит в несколько этапов. Воздухообмен определяется исходя из нормативных данных, используемого оборудования и индивидуальных пожеланий заказчика.

Объем проекта зависит от типа здания: одноэтажный жилой дом или квартира рассчитываются быстро, с минимальным количеством формул, а для производственного объекта требуется серьёзная работа.

Методика расчета вентиляции строго регламентирована, а исходные данные прописаны в СНиП, ГОСТ и СП.

Этапы

Подбор оптимальной по мощности и стоимости системы воздухообмена проходит пошагово. Порядок проектирования очень важен, так как от его соблюдения зависит эффективность работы конечного продукта:

  • Определение типа вентсистемы. Проектировщик анализирует исходные данные. Если требуется проветрить небольшое жилое помещение, то выбор падает на приточно-вытяжную систему с естественным побуждением. Этого будет достаточно, когда расход воздуха небольшой, вредных примесей нет. Если требуется рассчитать большой венткомплекс для завода или общественного здания, то предпочтение отдаётся механической вентиляции с функцией подогрева/охлаждения приточки, а если понадобится, то и с расчётом по вредностям.
  • Анализ выбросов. Сюда входит: тепловая энергия от осветительных приборов и станков; испарения от станков; выбросы (газы, химикаты, тяжёлые металлы).
  • Расчет воздухообмена. Задача систем вентилирования – удаление из помещения избытков тепла, влаги, примесей с равновесной или чуть отличающейся подачей свежего воздуха. Для этого определяется кратность воздухообмена, согласно которой подбирается оборудование.
  • Подбор оборудования. Производится по полученным параметрам: требуемый объем воздуха на приточку/вытяжку; температура и влажность внутри помещения; наличие вредных выбросов, подбираются вентустановки или готовые мультикомплексы. Самый важный из параметров – объём воздуха, необходимый для поддержания проектной кратности. Фильтры, калориферы, рекуператоры, кондиционеры и гидравлические насосы идут как дополнительные устройства сети, обеспечивающие качество воздуха.

Читайте также:  Штукатурные работы глиной

Расчёт выбросов

Объём воздухообмена и интенсивность работы системы зависят от двух этих параметров:

  • Нормы, требования и рекомендации, прописанные в СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование», а также другой, более узкоспециализированной нормативной документации.
  • Фактические выбросы. Рассчитываются по специальным формулам для каждого источника, и приведены в таблице:
Тепловыделения, Дж
Двигатель электрический N – мощность двигателя по номиналу, Вт;K1 – загрузочный коэффициент 0,7-0,9k2η – коэффициент работы в одно время 0,5-1.
Приборы освещения
Человек n – расчётное число людей для этого помещения;q – количество теплоты, которое выделяет организм одного человека. Зависит от температуры воздуха и интенсивности работы.
Поверхность бассейна V – скорость движение воздуха над водной поверхностью, м/с;Т – температура воды, 0СF – площадь водного зеркала, м2
Влаговыделение, кг/ч
Водная поверхность, например бассейн Р – коэффициент массоотдачи;F-площадь поверхности испарения, м2;Рн1, Рн2 – парциальные давления насыщенного водяного пара при определенной температуре воды и воздуха в помещении, Па;РБ – давление барометрическое. Па.
Мокрый пол F – площадь мокрой поверхности пола, м2;tс, tм – температуры воздушных масс, замеренные по сухому/мокрому термометру,0С.

Используя данные, полученные в результате вычисления вредных выделений, проектировщик продолжает рассчитывать параметры вентиляционной системы.

Вычисление воздухообмена

Специалисты используют две основные схемы:

  • По укрупненным показателям. В данной методике не предусматриваются вредные выбросы, такие как тепло и вода. Условно назовем его «Способ №1».
  • Метод с учётом избытков тепла и влаги. Условное название «Способ №2».

Способ №1

Единица измерения – м3/ч (кубические метры в час). Применяют две упрощенные формулы:

L=K ×V(м3/ч); L=Z ×n (м3/ч), где

K – кратность воздухообмена. Отношение объёма приточки за одни час, к общему воздуху в помещении, крат в час;
V – объём помещения, м3; Z – значение удельного обмена воздуха за единицу верчения,

n – количество единиц измерения.

Подбор вентрешёток осуществляется по специальной таблице. При подборе также учитывается средняя скорость прохождение потока воздуха по каналу.

Таблица выбора размеров вентиляционных решёток

Способ №2

При расчёте учитывается ассимиляция тепла и влаги. Если в производственном или общественном здании избыток тепла, то используется формула:

где ΣQ – сумма тепловыделений от всех источников, Вт; с – тепловая ёмкость воздуха, 1 кДж/(кг*К); tyx – температура воздуха, направленного на вытяжку,°С; tnp – температура воздуха, направленного на приточку,°С;

Температура воздуха, направленного на вытяжку:

где tp.3 – нормативная тем-ра в рабочей зоне,0С;
ψ- коэффициент увеличение температуры, зависящий от высоты измерения, равный 0,5-1,5 0С/м;
Н – длина плеча от пола до середины вытяжки, м.

Когда технологический процесс предполагает выделение большого объема влаги, то используется другая формула:

где G – объём влаги, кг/ч;
dyx и dnp – содержание воды на один килограмм сухого воздуха приточки и вытяжки.

Существует несколько случаев, более подробно описанных в нормативной документации, когда требуемые воздухообмен определяется по кратности:

L=k×V, где

k – кратность смены воздуха в помещении, раз в час;
V – объём помещения, м3.

Расчёт сечения

Площадь поперечного сечения воздуховода измеряется в м2. Её можно посчитать по формуле:

где v – скорость воздушных масс внутри канала, м/с.

Различается для основных воздуховодов 6-12 м/с и боковых придатков не более 8 м/с. Квадратура влияет на пропускную способность канала, нагрузку на него, а также уровень шума и способ монтажа.

Расчёт потерь давления

Стенки воздуховода не гладкие, и внутренняя полость не заполнена вакуумом, поэтому часть энергии воздушных масс при движении теряется на преодоления этих сопротивлений. Величина потери рассчитывается по формуле:

где ג – сопротивление трению, определяется, как:

Формулы, приведенные выше, являются правильными для каналов круглого сечения. Если воздуховод квадратный или прямоугольный, то существует формула приведения к эквиваленту диаметра:

где a,b – размеры сторон канала, м.

Мощность напора и двигателя

Напор воздуха от лопастей H должен полностью компенсировать потери давления P, при этом создавая расчётное динамическое Pд на выходе.

H = P + Pд.

Мощность электрического двигателя вентилятора:

Подбор калорифера

Часто отопление интегрируется в систему вентиляции. Для этого используются калориферы, разные виды рекуператоров, а также метод рециркуляции. Выбор устройства осуществляется по двум параметрам:

  • Qв – предельный расход тепловой энергии, Вт/ч;
  • Fk – определение поверхности нагрева для калорифера.

Расчёт гравитационного давления

Применяется только для естественной системы вентилирования. С его помощью определяется её производительность без механического побуждения.

Подбор оборудования

По полученным данным о воздухообмене, форме и размере сечение воздуховодов и решёток, количестве энергии для обогрева подбирается основное оборудование, а также фитинги, дефлектор, переходники и другие сопутствующие детали. Вентиляторы подбираются с запасом мощности под пиковые периоды работы, воздуховоды с учетом агрессивности среды и объёмов вентилирования, а калориферы и рекуператоры – исходя из тепловых запросов системы.

Ошибки при проектировании

На этапе создания проекта нередко встречаются ошибки и недоработки. Это может быть превышенный шумовой фон, обратная или недостаточная тяга, задувание (верхние этажи многоэтажных жилых домов) и другие проблемы. Часть из них можно решить и после завершения монтажа, с помощью дополнительных установок.

Яркий пример низкоквалифицированного расчета – недостаточная тяга на вытяжке из производственного помещения без особо вредных выбросов. Допустим, вентканал заканчивается круглой шахтой, возвышающейся над крышей на 2 000 – 2 500 мм.

Поднимать её выше не всегда возможно и целесообразно, и в подобных случаях используется принцип факельного выброса. В верхней части круглой вентшахты устанавливается наконечник с меньшим диаметром рабочего отверстия.

Создаётся искусственное сужение сечения, которое влияет на скорость выброса газа в атмосферу – она многократно увеличивается.

Пример проекта

Методика расчёта вентиляции позволяет получить качественную внутреннюю среду, правильно оценив негативные факторы, её ухудшающие. В компании «Мега.

ру» работают профессиональные проектировщики инженерных систем любой сложности. Мы оказываем услуги на территории Москвы и соседних областей. Также компания успешно занимается удалённым сотрудничеством.

Все способы связи указаны на странице «Контакты», обращайтесь.

Источник: https://m-e-g-a.ru/ventilyatsiya/poshagovaya-metodika-rascheta-ventilyatsii

Гигиеническая оценка систем вентиляции

Гигиеническая оценка систем вентиляции и их эффективности предполагает изучение и оценку следующих вопросов:

– Назначение и кубатура помещения; количество людей, находящихся в помещении; характеристика основных вредностей или выделений, изменяющих состояние воздушной среды (постоянное или периодическое выделение, локализованное или рассеянное);

– Система вентиляции: естественная или механическая, общеобменная или местная, приточно-вытяжная, кондиционирование;

– Схема вентиляции, ее конструктивные элементы; расположение и характеристика мест и устройств забора и выброса воздуха, устройств для обработки воздуха; взаиморасположение приточных и вытяжных отверстий в помещении;

– Воздухообмен в помещении (отдельно по притоку и по вытяжке), кратность воздухообмена, воздушный баланс в помещении;

– Микроклиматические параметры, химический и микробиологический состав воздуха в помещении, уровни шума и вибрации (для механической вентиляции);

– Состояние здоровья работающих или проживающих в данном помещении.

Для характеристики вентиляционных систем необходимо определять ряд показателей воздухообмена: кратность воздухообмена, воздушный куб и др.

Потребное количество вентиляционного воздуха по углекислоте.

Вычисляется по формуле: L =

Где L – объем потребной вентиляции на 1 человека, м3

K – количество углекислого газа (л), выделяемого 1 человеком в час ( в среднем 22,6 л при легкой физической работе)

P – допустимое количество углекислого газа в помещении (0,1%)

D – количество углекислого газа в атмосфере (0,04%)

Нормальный воздушный куб – объем помещения, который необходим человеку. Для этого объем потребного вентиляционного воздуха делится на кратность воздухообмена.

Фактический воздушный куб определяется путем деления кубатуры помещения на количество людей в нем.

Производительность вентиляции – количество воздуха подаваемого / удаляемого через фрамугу, форточку, вентиляционное отверстие в единицу времени.

Вычисляется по формуле: V = a · b · t ,

Где V – количество воздуха

a – площадь вентиляционного отверстия

b – скорость движения воздуха

t – время.

Кратность воздухообмена – показывает сколько раз в течение часа воздух помещения был сменен наружным.

Вычисляется по формуле: К = V/ С,

где К – кратность воздухообмена

V – производительность вентиляции, м3/ч

С – объем помещения, м3.

Критерием эффективности вентиляции является соответствие качества воздушной среды гигиеническим нормативам. Оценивается с помощью лабораторных и инструментальных методов путем определения микроклиматических показателей, а также химических и микробиологических показателей.

Для определения содержания углекислого газа в воздухе помещений можно использовать экспресс-метод Д.В.Прохорова.

Метод основан на обесцвечивании определенного объема поглотителя при прохождении через него воздуха, содержащего углекислоту. Чем больше в воздухе диоксида углерода, тем меньше нужно воздуха, чтобы обесцветить поглотитель.

Порядок определения. Приготавливается щелочной раствор, состоящий из 600 мл дистиллированной воды и 1 капли нашатырного спирта, к которому прибавляется 2-3 капли фенолфталеина. В результате раствор приобретает розовую окраску.

Приготовленный раствор в количестве 5 мл набирается в 20-мл шприц таким образом, чтобы между поршнем и раствором была прослойка воздуха 10 мл. Фиксировав поршень, шприц встряхивают и наблюдают за окраской раствора.

Если раствор не обесцветился, поршень поднимают до полного удаления воздуха из шприца, затем процедуру повторяют до тех пор, пока раствор в шприце не обесцветится. Измерения проводят последовательно в помещении и вне помещения на улице.

При расчете исходят из того, что концентрация углекислого газа в помещении будет во столько раз больше концентрации углекислого газа в атмосфере, во сколько раз меньше потребовалось взять порций воздуха в помещении для обесцвечивания раствора в шприце.

Пример. Для обесцвечивания раствора в шприце отобрали 50 порций наружного воздуха (атмосфера города), а в исследуемом помещении – 10 порций. Следовательно, концентрация углекислого газа в помещении будет равна 0,04% · 50 : 10 = 0,2% ( в атмосфере городов средняя многолетняя концентрация СО2 составляет 0,04%)

Гигиенический норматив: в воздухе закрытых помещений содержание углекислоты не должно превышать 0,07 – 0,1%.

Источник: https://megaobuchalka.ru/3/40538.html

Понравилась статья? Поделиться с друзьями:
Дизайн Дома
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector